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Why bother with binaries?

How do they form?

What challenges do binaries pose from a 
numerical perspective?

Example Calculations
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FIG. 3.— The effect of various model parameters and assumptions on the derived enhancement in fesc. The solid line in each panel is our fiducial model where
runaways are produced by dynamical encounters. Top Left: Variation in the normalization of the galaxy size-mass relation by ±25% (dotted lines). A model
with a β density profile for the gas is included (green line). Top Middle: Variation in the treatment of dust. Top Right: Variation in the minimum and maximum
stellar masses. Bottom Left: Variation in the fraction of runaways, frun. The dependence of fesc on frun is approximately linear over the range considered. Bottom
Middle: Variation in the treatment of the runaway velocities, Vrun. A fixed Vrun is varied from 40−80 km s−1. In addition, we consider a power-law distribution of
Vrun (labelled “POW” in the figure), and a Maxwellian distribution of Vrun as advocated in Stone (1991, labelled “S91” in the figure). In this last case frun = 0.46,
as advocated by Stone. Bottom Right: Variation in the ionizing luminosity function (LF) for non-runaways. The LF is a power law with index γ that varies from
−1.5 to −2.0. See the §2.1 for details.

based on estimates of the z = 10 UV LF (Kuhlen & Faucher-
Giguere 2012). These estimates should be treated with a great
deal of caution — they are merely included here to give a
sense of the types of galaxies one might expect to occupy
these halos at high redshift.

The key result is that fesc increases by factors of 4 − 8 at
Mhalo < 109 M!. An implication of Figure 2 is that, in our
model, runaways contribute 50−90% of all the ionizing pho-
tons that escape from the galaxy. OB runaways can therefore
significantly affect the escape of ionizing radiation from high
redshift galaxies, and may therefore play an important role in
reionizing the universe.

The sensitivity of these results to the assumptions of the
model are explored in Figure 3. In this figure we vary the
adopted galaxy size—mass relation by ±25%, include dust at-
tenuation, vary the minimum and maximum stellar mass, vary
frun andVrun, vary the ionizing LF, and include the predictions
of the supernova mechanism for the production of runaways.

The trends are generally as expected. As the size of the
galaxy decreases the effect of runaways becomes stronger
both because it is easier for runaways to move to regions of
low column density and because, at fixed galaxy mass, smaller
sizes result in denser galaxies, lowering the escape fraction for

non-runaways. Likewise, increasing frun orVrun results in run-
aways having a greater effect on fesc. In this figure we have
also considered distributions ofVrun, rather than single values.
We have included both a power-law distribution with index −1
and mean of 40 kms−1, and a Maxwellian with a dispersion
of 30 kms−1. In the latter model we have simultaneously set
frun = 0.46 in order to mimic the observational constraints on
the runaway population determined by Stone (1991). Adopt-
ing a distribution ofVrun rather than a fixed value has a modest
effect on the results.

Dust has a very minor effect on the derived fesc values. As
pointed out by Gnedin et al. (2008), even without dust the vast
majority of non-runaways already have fesc = 0.0 (see Figure
1), and so the addition of dust attenuation provides a minor
modulation to fesc. In addition, the majority of runaways re-
side in regions of very low column density, where dust atten-
uation will also have a minor effect.

Changing the maximum stellar mass of runaways from
100 M! to 60 M! causes a modest increase in the enhance-
ment due to runaways because the mean stellar lifetime of
runaways increases as the mass decreases. The runaways are
therefore capable of traveling further from the central regions
of the galaxy before they explode.

GR confirmation

Type Ia supernovae / dark energy

Confirmed BH

GW signal Exoplanet characterization Reionization (Conroy & Kratter 
2012)

Gallo et al



What we (theorists) “know”:

• Multiple systems help solve the “angular momentum problem” (R. 
Larson)

• There are multiple pathways to form binaries

• The cluster population should be distinct from the field population

• The formation mechanism should leave an imprint on the population



Binary Formation
• Three modes

• Capture /ejection

• Turbulent Fragmentation

• Disk Fragmentation

Kratter et al 2010

Offner, Kratter et al 
2010

formation of binaries and the destruction of the disks around
massive stars.

2. SIMULATIONS

The code used in this study is a modified version of the pub-
licly released SPH/N-body code GADGET-2 (Springel 2005).
Wemodel the stars as point masses interacting only through grav-
ity, while the gas particles experience hydrodynamic forces as
well. We have modified the code so that the stars behave as sink
particles (Bate et al. 1995), accreting gas that falls within the pre-
set, mass-dependent accretion radius. The accretion radii are
set to be small compared to the Bondi-Hoyle radius rg ! 2GM?/
(v2 þ c2s )

1/2, where cs is the sound speed. Using sink particles
prevents the gas from clumping in unphysical manners about the
stars and prevents very dense gas from dominating the integra-
tion once it is very close to the stars. We have also modified the
numerical viscosity slightly, to remain at low levels except when
shocks are present (Monaghan 1997). For more detail on the code
and the changes made to it, see Moeckel & Bally (2006).

We set up the disk with a surface density profile

!(r) ¼ !0
r

r0

! "$1

; ð1Þ

with the vertical density structure at a given radius

!(r; z) ¼ !0(r) exp $ z2

2H(r)2

# $
; ð2Þ

where H(r) is a temperature-dependent scale height and !0 the
density at the midplane. The smoothing lengths of the SPH par-
ticles are less thanH(r)/2 for all but the innermost regions of the
disk.

The temperature profile is

T (r) ¼ T0
r

r0

! "$1=2

; ð3Þ

with T0 set depending on the mass of the nearest stellar particle.
To return to this temperature profile when the disk is perturbed,
we implement a simple cooling scheme,

du

dt
¼ $ u$ ubase

"c
: ð4Þ

Here "c is the cooling timescale and is inversely proportional to
the Keplerian orbital frequency at the particle’s radius. The tem-
perature profile of equation (3) is converted to an internal energy
to provide ubase. The disks are not allowed to cool below the base
temperature profile; in the absence of this, the cooling timescale
that we use is short enough that fragmentation would likely oc-
cur (Gammie 2001; Rice et al. 2005), an effect that we are not
considering here. The temperature and density profiles are ap-
propriate to a disk shortly after its formation (Lin & Pringle
1990).
We place!3:2 ; 104 particles pairwise symmetrically around

the central star and normalize the surface density so that 2 M'
is contained in the disk out to rd ¼ 500 AU. The temperature
is normalized so that the disk is Toomre stable throughout. We
allow the disk to evolve in isolation until it has reached a steady
state, at which point we introduce the impactor. The initial disk is
shown in Figure 1 (left). To test the resolution of our simulations,
we ran a retrograde encounter with a 1 M' impactor, and peri-
astron radius 0.6 times the disk radius, with 1:28 ; 105 particles.
There was less than 3% difference in the orbital energy change
between the lower and higher resolution simulations, with the

Fig. 1.—Example of an encounter with m ¼ 3:0M', rp ¼ 175 AU, and i ¼ 45(. Plotted is the logarithm of the gas column density. Left: Impactor has not yet passed
through the disk, which is in its relaxed, initial state. Right: Passage through the disk is completed, and spiral features are visible.

MOECKEL & BALLY276 Vol. 656

Moeckel & Bally 2007



What observations show us:

• For solar type stars, the distribution is log-flat from 5-3000 AU with no 
apparent break in slope or frequency

• Lower mass stars have separations typically < 200 AU (except the wide ones)

• Higher mass stars are incomplete but high multiplicity. May show a preference 
for more equal mass ratio at smaller separation, and a correlation between 
mass ratio and separation

• For solar type and lower mass stars, all companions masses are equally 
probable

• Separation in field is log normal, and the frequency is lower

Kraus et al 2011, Raghavan et al 2010, Sana & Evans 2011



Multiplicity is Mass Dependent

Raghavan et al 2010
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Figure 12. Multiplicity statistics by spectral type. The thin solid lines represent
stars and brown dwarfs beyond the spectral range of this study, and their sources
are listed in the text. For the FGK stars studied here, the thick dashed lines show
our observed multiplicity fractions, i.e., the percentage of stars with confirmed
stellar or brown dwarf companions, for spectral types F6–G2 and G2–K3. The
thick solid lines show the incompleteness-adjusted fraction for the entire F6–K3
sample. The uncertainties of the multiplicity fractions are estimated by bootstrap
analysis as explained in Section 5.2.

publications, when available. Otherwise, they are estimated
using mass ratios for double-lined spectroscopic binaries, or
from multi-color photometry from catalogs, or using the ∆mag
measures in the WDS along with the primary’s spectral type.
Metallicity and chromospheric activity estimates of the primary
are adopted for all components of the system.

5.3.2. Multiplicity by Spectral Type and Color

Figure 12 shows the multiplicity fraction for stars and brown
dwarfs. Most O-type stars seem to form in binary or multiple
systems, with an estimated lower limit of 75% in clusters and
associations having companions (Mason et al. 1998a, 2009).
Studies of OB-associations also show that over 70% of B and
A type stars have companions (Shatsky & Tokovinin 2002;
Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007). In sharp
contrast, M-dwarfs have companions in significantly fewer
numbers, with estimates ranging from 11% for companions
14–825 AU away (Reid & Gizis 1997) to 34%–42% (Henry
& McCarthy 1990; Fischer & Marcy 1992). Finally, estimates
for the lowest mass stars and brown dwarfs suggest that only
10%–30% have companions (Burgasser et al. 2003; Siegler et al.
2005; Allen et al. 2007; Maxted et al. 2008; Joergens 2008).
Our results for F6–K3 stars are consistent with this overall
trend, as seen by the thick solid lines for the incompleteness-
corrected fraction. Moreover, the thick dashed lines for two
subsamples of our study show that this overall trend is present
even within the range of solar-type stars. Of the blue subsample
(0.5 ! B − V ! 0.625, F6–G2, N = 131), 50% ± 4%
have companions, compared with only 41% ± 3% for the red
subsample (0.625 < B − V ! 1.0, G2–K3, N = 323).

5.3.3. Period Distribution

Figure 13 shows the period distribution of all 259 confirmed
pairs, with an identification of the technique used to discover
and/or characterize the system. To provide context, the axis
at the top shows the semimajor axis corresponding to the pe-
riod on the x-axis assuming a mass sum of 1.5 M", the aver-
age value of all the confirmed pairs. When period estimates

Figure 13. Period distribution for the 259 confirmed companions. The data
are plotted by the companion detection method. Unresolved companions
such as proper-motion accelerations are identified by horizontal line shading,
spectroscopic binaries by positively sloped lines, visual binaries by negatively
sloped lines, companions found by both spectroscopic and visual techniques by
crosshatching, and CPM pairs by vertical lines. The semimajor axes shown in
AU at the top correspond to the periods on the x-axis for a system with a mass
sum of 1.5 M", the average value for all the pairs. The dashed curve shows
a Gaussian fit to the distribution, with a peak at log P = 5.03 and standard
deviation of σlog P = 2.28.

are not available from spectroscopic or visual orbits, we esti-
mate them as follows. For CPM companions with separation
measurements, we estimate semimajor axes using the statistical
relation log a′′ = log ρ ′′ + 0.13 from DM91, where a is the
angular semimajor axis and ρ is the projected angular separa-
tion, both in arcseconds. This, along with mass estimates as de-
scribed in Section 5.3.1 and Newton’s generalization of Kepler’s
Third Law yields the period. For the remaining few unresolved
pairs, we assume periods of 30–200 years for radial-velocity
variables and 10–25 years for proper-motion accelerations. The
period distribution follows a roughly log-normal Gaussian pro-
file with a mean of log P = 5.03 and σlog P = 2.28, where
P is in days. This average period is equivalent to 293 years,
somewhat larger than Pluto’s orbital period around the Sun. The
median of the period distribution is 252 years, similar to the
Gaussian peak. This compares with corrected mean and me-
dian values of 180 years from DM91. The larger value of the
current survey is a result of more robust companion informa-
tion for wide CPM companions. The similarity of the overall
profile with the incompleteness-corrected DM91 plot suggests
that most companions they estimated as missed have now been
found. The shading in the figure shows the expected trend—the
shortest period systems are spectroscopic, followed by com-
bined spectroscopic/visual orbits, then by visual binaries, and
finally by CPM pairs. The robust overlap between the various
techniques in all but the longest period bins underscores the
absence of significant detection gaps in companion space and
supports our earlier statements about the completeness of this
survey. Binaries with periods longer than log P = 8 are rare,
and only 10 of the 259 confirmed pairs (4%) have estimated
separations larger than 10,000 AU. Although separations wider
than this limit were not searched comprehensively, Figure 8
shows that separations of up to 14,000 AU were searched for
some systems, and 56% of the primaries were searched beyond
the 10,000 AU limit. The drop in the number of systems with
companions thus appears to occur within our search space and
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2003; Gizis et al., 2003; Martín et al., 2003). However,
recent studies have suggested that the BD multiplicity fre-
quency may be significantly higher, possibly exceeding 0.5
(Pinfield et al., 2003; Maxted and Jeffries, 2005), provided
most BDs reside in very tight BD–BD pairs.
2.1.2 Separation distribution. The binary separation dis-

tribution is very wide and flat, usually modelled as a log-
normal with mean ∼ 30 AU and variance σlogd ∼ 1.5
(DM91 for G-dwarfs). This is illustrated in Fig. 1 where
the field period distribution is compared to that of young
stars (note that a3/P 2 = msys, where a is in AU, P is in
years andmsys is the system mass inM!).
A similar distribution is found for M-dwarfs by Fischer

and Marcy (1992), and generally seems to hold for all stars,
although the maximum separations do appear to decrease
somewhat, but not substantially, for stars with decreasing
mass (Close et al., 2003). Very low-mass stars (VLMSs)
and BDs seem strongly biased towards very close compan-
ions with semi-major axes a ≤ amax ≈ 15 AU (Close et
al., 2003; Gizis et al., 2003; Pinfield et al., 2003; Maxted
and Jeffries, 2005) in contrast to those of stars that have
amax

>∼ 100 AU (DM91; Fischer and Marcy, 1992; Mayor
et al., 1992). It is this unusual separation distribution which
may have led to the underestimate of the BD multiplicity
fraction. The much smaller amax for VLMSs and BDs com-
pared to the other stars cannot be a result of disruption in a
cluster environment but must be due to the inherent physics
of their formation (Kroupa et al., 2003).
2.1.3Mass ratio distribution. DM91 found that Galactic-

field systems with a G-dwarf primary have a mass-ratio
distribution biased towards small values such that it does
not follow the stellar IMF which would predict a far
larger number of companions with masses m2

<∼ 0.3 M!

(Kroupa, 1995b). For short-period binaries, the mass-ratio
distribution is biased towards similar-mass pairs (Mazeh
et al., 1992). Integrating over all periods, for a sam-
ple of nearby systems with primary masses in the range
0.1 <∼m1/M!

<∼ 1, Reid and Gizis (1997) find the mass-
ratio distribution to be approximately flat and consistent
with the IMF (Fig. 2).
2.1.4 Eccentricity distribution. Binary systems have a

thermalised eccentricity distribution (Eqn. 3 below) for pe-
riods P >∼ 103−4 d, with tidally circularised binaries dom-
inating at low separations (DM91; Fischer and Marcy,
1992).
2.1.5 Higher-order systems. DM91 find the uncorrected

ratio of systems of different multiplicity to be S:B:T:Q =
1.28 : 1 : 0.175 : 0.05 (see also Tokovinin and Smekhov,
2002), suggesting that roughly 20% of multiple systems are
high-order systems. Concerning the origin of high-order
multiple systems in the Galactic field, we note that many,
and perhapsmost, of these may be the remnants of star clus-
ters (Goodwin and Kroupa, 2005).

2.2 Pre-Main Sequence Multiple Systems.

The properties of pre-main sequence (PMS) multiple

Fig. 1.— The period distribution function. Letters show the
observed fraction of field G, K and M-stars and PMS stars (P).
The solid curve shows the model initial period distribution (see
Eqn. 2). The light histogram is the initial binary population in the
simulations of Kroupa (1995b) which evolves through dynamical
interactions in a cluster into a field-like distribution shown by the
heavy histogram.

systems are much harder to determine than those in the
field. We refer the reader to the chapter by Duchêne et al.
for a detailed review of the observations of PMS multiple
systems and the inherent problems.
Probably the most important difference between the

PMS and field populations is that young stars have a signif-
icantly higher multiplicity fraction than the field (see the
chapter by Duchêne et al.; also see Fig. 1).
The separation distribution of PMS stars also appears

different to that in the field with an over-abundance of bina-
ries with separations of a few hundred AU (Mathieu, 1994;
Patience et al., 2002; Fig. 1). More specifically, the binary
frequency in the separation range∼ 100−1000AU is a fac-
tor of ∼ 2 higher than in the field (Mathieu, 1994; Patience
et al., 2002; Duchêne et al., 2004). Extrapolating this in-
crease across the whole separation range implies that fmult

for PMS stars could be as high as 100%. (It appears that in
Taurus the binary frequency is ∼ 100% for stars > 0.3M!,
Leinert et al., 1993; Köhler and Leinert, 1998).
The mass-ratio distribution of PMS stars is similar to

the field population. A detailed comparison is not yet pos-
sible because low-mass companions to pre-main sequence
primaries are very difficult to observe as the available re-
sults depend mostly on direct imaging or speckle interfer-
ometry, while for main-sequence systems radial-velocity
surveys have been done over decades (DM91). Thus, using
near-infrared speckle interferometry observations to obtain
resolved JHK-photometry for the components of 58 young
binary systems, Woitas et al. (2001) found that the mass-
ratio distribution is flat for mass ratios q ≥ 0.2 which is

2

Goodwin et al 2007

Pre-Main Sequence stars have a higher multiple 
fraction 



Two Right Answers20 M.R. Bate

Figure 17. Multiplicity fraction as a function of primary mass. The left panel gives the result at the end of the radiation hydrodynamical calculation. On the
right, we give the result from the main barotropic calculation of Bate (2009a) at the same time. The blue filled squares surrounded by shaded regions give the
results from the calculations with their statistical uncertainties. The thick solid lines give the continuous multiplicity fractions from the calculations computed
using a boxcar average. The open black squares with error bars and/or upper/lower limits give the observed multiplicity fractions from the surveys of Close
et al. (2003), Basri & Reiners (2006), Fisher & Marcy (1992), Raghavan et al. (2010), Duquennoy & Mayor (1991), Preibisch et al. (1999) and Mason et al.
(1998), from left to right. Note that the error bars of the Duquennoy & Mayor (1991) results have been plotted using dashed lines since this survey has been
superseded by Raghavan et al. (2010). The observed trend of increasing multiplicity with primary mass is well reproduced by both calculations. Note that
because the multiplicity is a steep function of primary mass it is important to ensure that similar mass ranges are used when comparing the simulation with
observations.

Mass Range [M�] Single Binary Triple Quadruple

M < 0.03 7 0 0 0
0.03 � M < 0.07 20 0 0 0
0.07 � M < 0.10 8 3 0 0
0.10 � M < 0.20 17 7 1 0
0.20 � M < 0.50 21 9 2 2
0.50 � M < 0.80 5 2 0 1
0.80 � M < 1.2 2 1 1 0

M > 1.2 4 6 1 4

All masses 84 28 5 7

Table 2. The numbers of single and multiple systems for different primary
mass ranges at the end of the radiation hydrodynamical calculation.

mf =
B + T +Q

S +B + T +Q
, (2)

where S is the number of single stars within a given mass range
and, B, T , and Q are the numbers of binary, triple, and quadruple
systems, respectively, for which the primary has a mass in the same
mass range. Note that this differs from the companion star fraction,
csf , that is also often used and where the numerator has the form
B+2T +3Q. We choose the multiplicity fraction following Hub-
ber & Whitworth (2005) who point out that this measure is more
robust observationally in the sense that if a new member of a multi-
ple system is found (e.g. a binary is found to be a triple) the quantity
remains unchanged. We also note that it is more robust for simula-
tions too in the sense that if a high-order system decays because it
is unstable the numerator only changes if a quadruple decays into
two binaries (which is quite rare). Furthermore, if the denominator
is much larger than the numerator (e.g. for brown dwarfs where the
multiplicity fraction is low) the production of a few single objects
does not result in a large change to the value of mf . This is useful
because many of the systems in existence at the end of the calcula-
tions presented here may undergo further dynamical evolution. By
using the multiplicity fraction our statistics are less sensitive to this
later evolution.

The method we use for identifying multiple systems is the
same as that used by Bate (2009a), and a full description of the
algorithm is given in the method section of that paper. When
analysing the simulations, some subtleties arise. For example,
many ‘binaries’ are in fact members of triple or quadruple systems
and some ‘triple’ systems are components of quadruple or higher-
order systems. From this point on, unless otherwise stated, we de-
fine the numbers of multiple systems as follows. The number of bi-
naries excludes those that are components of triples or quadruples.
The number of triples excludes those that are members of quadru-
ples. However, higher order systems are ignored (e.g. a quintuple
system may consist of a triple and a binary in orbit around each
other, but this would be counted as one binary and one triple). We
choose quadruple systems as a convenient point to stop as it is likely
that most higher order systems will not be stable in the long-term
and would decay if the cluster was evolved for many millions of
years. The numbers of single and multiple stars produced by the
radiation hydrodynamical calculation are given in Table 2 follow-
ing these definitions. In Table 3, we give the properties of the 40
multiple systems.

In the left panel of Fig. 17, we compare the multiplicity frac-
tion of the stars and brown dwarfs as a function of stellar mass
obtained from the radiation hydrodynamical calculation with ob-
servations. The results from a variety of observational surveys (see
the figure caption) are plotted using black open boxes with associ-
ated error bars and/or upper/lower limits. The data point from the
survey of Duquennoy & Mayor (1991) is plotted using dashed lines
for the error bars since this survey has been recently superseded by
that of Raghavan et al. (2010). The results from the radiation hy-
drodynamical simulation have been plotted in two ways. First, us-
ing the numbers given in Table 2 we compute the multiplicity in six
mass ranges: low-mass brown dwarfs (masses < 0.03 M�), VLM
objects excluding the low-mass brown dwarfs (masses 0.03� 0.10
M�), low-mass M-dwarfs (masses 0.10 � 0.20 M�), high-mass
M-dwarfs (masses 0.20� 0.50 M�), K-dwarfs and solar-type stars
(masses 0.50 � 1.20 M�), and intermediate mass stars (masses
> 1.2 M�). The filled blue squares give the multiplicity fractions

c� 0000 RAS, MNRAS 000, 000–000

of star formation (x 6). Finally, the Appendix includes an
elementary derivation of characteristic binary scales, in terms of
their orbital parameters.

2. OBSERVATIONAL EVIDENCE

2.1. Prestellar Core Properties

2.1.1. Density Structure

The observations of Motte & André (2001) consisted of a
complete 1.3 mm survey of both prestellar cores and proto-
stellar envelopes using the IRAM 30 m telescope and the
MPIfR bolometer array (MAMBO). Their observations re-
solved structures from 1500 to 15,000 AU. Motte & André
(2001) concluded that their observations of prestellar core
density distributions were flatter than predicted by a singular
isothermal sphere model (Shu 1977) but were consistent with
Bonnor-Ebert spheres (Bonnor 1957; Ebert 1955).

2.1.2. Velocity Structure on the Molecular Cloud Core Scale

In 1981, in an extension of an earlier paper (Larson 1979)
focusing on the large-scale structure of the interstellar
medium, Larson (1981) published a seminal paper on the
internal velocity dispersion in molecular clouds. Using data
already published in the literature in a wide variety of
studies, he accumulated about 50 data points for a number of
different star-forming regions on scales ranging from 10!1 to
102 pc. He established scaling laws for both the mean density
and the total internal velocity dispersion over projected
length scales on the sky. Plotting the total internal velocity
dispersion (sum of thermal and nonthermal line widths)
versus the maximum projected linear size of the region, he
found that the internal velocity dispersion obeyed a power
law of the form

!1Dðkm s!1Þ ¼ 1:10 LðpcÞ0:38: ð1Þ

Here we have designated the one-dimensional line width
dispersion as inferred from velocities along the line of sight as
!1D, to properly distinguish it from the fully three-dimensional
velocity dispersion.

Significantly, the power-law nature of the turbulent line
width–size scaling laws supports the premise, which Larson
originally suggested, that over a wide range of scales, the
observed interstellar turbulence is part of a scale-free
hierarchy of turbulent eddies. This scale-free cascade should
extend all the way down to about the characteristic scale
where such eddies are damped, either the minimum Jeans
mass in the cloud (Larson 1995) or the ion-neutral damping
length (Myers & Lazarian 1998), depending on whether
thermal or magnetic damping effects dominate, which in turn
depends on the relative strength of the magnetic field and the
ionization state of the gas.
Subsequent authors investigated the line width–size scaling

relationship in more detail for molecular cloud cores using
more precise techniques. In particular, Larson’s original study
contained only four cores observed with rather poor angular
resolution and in the absence of actual data made blanket
assumptions regarding the kinetic temperature of the gas used
in computing the local sound speed. Leung, Kutner, & Mead
(1982) and Myers (1983) reinvestigated Larson’s line width–
size relationship and found the exponent closer to 1

2 rather than
1
3. In the most extensive study of molecular cloud cores to date,
Jijina, Myers, & Adams (1999) studied 264 cores mapped in
NH3 in a wide variety of regions and environmental con-
ditions. They concluded that the line width–size relationship
for all cores has an exponent of 0:63 % 0:10, although a slight
difference of low statistical significance existed between
subsamples with embedded IRAS sources (exponent 0:49%
0:12) and without (exponent 0:83 % 0:18). Moreover, Jijina
et al. (1999) found a significant variation in the median value of
the nonthermal line width !vNT across regions: from a value
of 0.22 km s!1 in Taurus (thermal line width median !vT ¼
0:44 km s!1) to a nonthermal line width !vNT median value
of 0.86 km s!1 in Orion A (thermal line width median !vT ¼
0:58 km s!1). Over all regions, cores without IRAS embedded
sources or clusters had !vNT=!vT ¼ 0:65þ0:35

!0:25 (within one
quartile of the median). Cores without clusters but with IRAS
embedded sources had !vNT=!vT ¼ 1:0þ0:40

!0:30. Cores with
clusters had higher nonthermal line widths still.
We note that the most complete observations to date suggest

that even in low-mass cores, the level of turbulent support is
comparable to that of thermal support, although there are large

Fig. 1.—Histogram of log Pd . The left panel shows our numerical results for 200 model systems for the case of star formation efficiency "' ¼ 0:5. For
comparison, the right panel shows the period distribution inferred from PMS stars (Mathieu 1994; solid line) and from field stars (DM91; dashed line).
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“physics”, right (field) 

distribution



Current Binary Star “Problems”

• Binary Formation and Early Evolution:

• Large Scale - collapse from GMCs

• Mid Scale - formation from individual core

• Small Scale - formation within / interaction with protostellar disks

• Evolved Binaries

• Common Envelope Phases

• Supernovae / Tidal Disruptions



Simulating Binaries: What we want

• Robust hydrodynamic scheme (shock 
capturing, *low numerical diffusion)

• Dynamic Range 

• AMR

• Sink Particles

• (Self) Gravity

• No enforced axisymmetry

• MHD? Radiation? Cooling / complex 
EOS? 



What we get with...Cartesian Grid Codes

• PRO:

• AMR  

• Sink Particles 

• (Self) Gravity (FFT / multigrid)

• Shock capturing hydro 
(Reimann solvers)

• (non-ideal) MHD, radiation, 
EOS, etc

• (somewhat) flexible w.r.t 
symmetry

• CON:

• linear vs angular momentum 
conservation

• “high Mach number” problem

• resolving spheres with cubes

• some dynamic range limitations 
(courant, alfven speed)

Kratter et al 2010



Example 1: Binaries via disk fragmentation
• Numerical Experiments: 

•  ORION:  Parallel, Adaptive Mesh 
Refinement, hydro + SG + sink 
particles, isothermal limit (Klein 99, 
Truelove 98, Krumholz 2004)

• Goals

• study role of rapid infall and 
fragmentation caused by self 
gravity 

• Understand conditions for binary 
and multiple formation

• Conduct resolution study

r
Rc 

star + disk

core

Kratter et al 2010



Example 2: Binary Orbital Evolution with MHD

• Evolution of binary orbits with a 
misaligned magnetic field and core 
rotation axis (Enzo)

– 21 –
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Fig. 8.— The column density and velocity field in both face-on and edge-on view for the

λ = 4 cases, at a representative time t ≈ 37 kyr. Upper panel is the aligned case and bottom
being the orthogonal case. The length of region is 3× 1016cm.

Zhao, Li, & Kratter, in prep
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Fig. 2.— Evolution of binary separation with time for λ = 4 cases with different tilt angles:

0◦ (black solid), 45◦(blue dash-dotted), and 90◦ (red dashed).



What we get with...Cylindrical / Spherical Grid 
Codes

• PRO:

• aligned flows and grids 
(disks / spheres)  

• Sink Particles 

• (Self) Gravity 

• Shock capturing hydro

• (non-ideal) MHD, radiation, 
EOS, etc

• angular momentum 
conservation

• FARGO type algorithm

• CON:

• “high Mach number” problem

• constrained axis of symmetry

• some dynamic range limitations 
(courant, alfven speed)

P. Armitage



Example 1: Binary - disk interaction with Binary off-
grid

• “Live” binary at the center, 
but not “on” the grid

A. Pierens and R. P. Nelson: On the evolution of multiple low mass planets embedded in a circumbinary disc 947

Fig. 12. This figure shows, for Model2, snapshots of the disc surface density at times shown above the plots. In this figure, planets are represented
by white circles.

Fig. 13. This figure shows the resonances which are established between adjacent bodies at the end of the simulation corresponding to Model2.
Planets are labelled from 1 to 5, with 1 being the innermost planet and 5 being the outermost one.

Sect. 3.2 where the inner and outer planet masses were 20 and
5 M⊕, respectively.

4.4. Long term evolution

We now turn to the question of the long-term evolution of
the planetary systems obtained in the five-planet simulations.
Because the interaction with the gas disc tends to damp eccen-
tricities, it is necessary to examine the dynamical stability of the
planets after the disc dispersal to establish long term stability.
Each of the previous simulations was restarted at a point corre-
sponding to the end of the run, but with the gas surface density
decaying exponentially with an e-folding time tdec = 2 × 103.
Once these systems had evolved for ∼104 binary orbits, by which
time the surface density in the discs had decreased by a factor of
∼103, we continued the simulations with a pure N-body code,
ignoring any residual effects of the remaining gas. For each of
the five-planet models the results of this procedure are presented
in Fig. 9, which displays the time evolution of the orbital radii of
the planets.

In Model1, the eccentricity growth resulting from the disc
dispersal gives rise, at the beginning of the simulation, to nu-
merous scattering events that eventually lead to collisions. At
time t ∼ 8 × 104 a system of two planets with masses of 27.5
and 22.5 M⊕ remains, but these merge at t ∼ 1.1× 105. The final
state of the system is then a 50 M⊕ planet orbiting at r ∼ 1.5.

A similar outcome is obtained in Model3 in which the long-
term evolution resulted in a 15 M⊕ planet evolving in a high-
eccentricity orbit with a semi-major axis of ap ∼ 2. At earlier
times, the increase in eccentricities following disc dispersal led
to a collision between the 12.5 and 22.5 M⊕ bodies, thereby
forming a new 35 M⊕ planet. At t ∼ 2×105, the latter is observed
to undergo a close encounter with the cental binary, leading to
this body being completely ejected from the system.

Interestingly, the three-planet system in Model2 appears to
be dynamically stable over long time scales, with the planets
maintaining their commensurabilities. This indicates that multi-
planet resonant systems could potentially be found in circumbi-
nary discs, where the existence of the resonance helps to main-
tain the stability of the system.

Pierens & Nelson, 2008



What we get with...SPH
• PRO:

• Lagrangian solution to dynamic 
range problems  

• Sink Particles 

• (Self) Gravity (tree)

• angular momentum 
conservation

• No imposed symmetries / 
domain geometry

• CON:

• complexities in addressing 
numerical diffusion 

• some dynamic range limitations 
(courant, alfven speed)

• some shock capturing challenges

• some uncertainties in convergence

N. Moeckel



M. Bate, 2011



What we get with...Moving Mesh
• PRO:

• Lagrangian solution to dynamic 
range problems  

• Sink Particles 

• (Self) Gravity (tree)

• No imposed symmetries / 
domain geometry

• Reimann solver hydro

• no high-mach number flows 
across the mesh

• CON:

• complexities in addressing 
numerical diffusion and 
conservation

• slower due to tesselation 
requirements

• complex boundary conditions

• grid sampling noise



Moving Mesh Codes (e.g. AREPO, Springel 2009)

• Mesh is made every timestep to 
track the motion of the cell center of 
mass

• Reimann problem is solved in the 
cell face frame (boosted)

Planet-disk interaction on a moving mesh 3

Figure 1. Evolution of a Voronoi mesh under differential rotation supported by a Keplerian potential (time increases left-to-right and top-to-bottom). The
mesh-generating points are initially positioned in a polar distribution (logarithmic spacing in radius), which is roughly maintained. The color-filled cells
correspond to set of cells tagged according to ID number at time= 0(top left panel) and subsequently followed in time. The spatial distribution of the tagged
cells highlights the “quasi-Lagrangian” nature (Vogelsberger et al. 2012) of the moving-mesh approach in the case of Keplerian shear.

orbits of SPH particles (Springel 2005). Note that Duffell & Mac-
Fadyen (2011) use a Runge-Kutta (RK4) integration for the motion
of the mesh-generating points. Although the RK4 is more accu-
rate than the KDK leapfrog, it is well known to suffer from severe
secular effects, while the leapfrog does not. If the disk is going to
be evolved for hundreds and thousands of orbits, the choice of the
mesh-drifting algorithm can be important.

Typically, the gravitational time-step will be shorter than the
fluid frame Courant time step for low resolution runs. For high res-
olution, the Courant-time step is expected to dominate. This is be-
cause the orbital time-step should depend more weakly on cell size
than the signal-crossing time. For KDK integrators of particles in
Keplerian potential, about 50-100 time-steps should suffice to cap-
ture the orbit accurately. The acceleration time-step is always based
on the local gravitational potential, such that it adapts to the planet
potential when close to it, and is modified if self-gravity is included.
As a result, AREPO could be more computationally expensive than
the classic FARGO scheme, because time-steps are allowed to be-
come shorter than the fluid-frame Courant time-step, and because
the motion of the mesh needs to be solved for instead of being pre-
scribed. In addition, the mesh needs to be re-tessellated at every
time-step. Note that the concerns raised by Dong, Rafikov & Stone
(2011) about the use of the fluid-frame Courant time-step ignoring
the gravitational influence of the planet in FARGO should not be an
issue in our case.

Gravitational Potential. Following de Val-Borro et al. (2006), we
represent the star-planet system by an external, time varying poten-

tial:

�(r, t) = �GM⇤

|r| � GMp

|r� rp(t)|
+

GMp

|rp(t)|3
r · rp(t) (2)

where the third term on the right hand side corresponds to the in-
direct term that results from choosing the coordinate system to be
fixed to the central star.The planet’s position vector is

rp(t) = ap cos (2⇡ t/Pp) ˆx+ ap sin (2⇡ t/Pp) ˆy , (3)

(with ap = Pp = 1) i.e. the planet moves in a circular orbit around
the star.

The direct term corresponding to the planet potential (second
term on the RHS of Equation 2) must be softened. We have chosen
a spline-type gravitational softening for the planet potential as is
usually done in GADGET (Springel, Yoshida & White 2001). The
spline softening ensures a smooth transition into the exact New-
tonian potential at a finite distance from the planet (2.8 times the
gravitational softening parameter). In here, we use a gravitational
softening of ✏ = 0.03 (0.6 times the disk scaleheight at the planet’s
position) in agreement with the general setup proposed by de Val-
Borro et al. (2006) (see Dong, Rafikov & Stone 2011, for a discus-
sion on the different types of softening and their effects).

In the presence of the planetary potential, the evolution of the
mesh deviates for the nearly axially symmetric geometry of Fig-
ure 1 to one that adapts to the density evolution of the disk under
the tidal torquing of the planet. Figure 2 shows the geometry of the
mesh in our lowest resolution runs (see Section 2.2 below) for two
different mass ratios after 100 planetary orbits. In the small mass
ratio run, the distortion of the mesh is subtle but the characteristic
spiral wake of the planet can be identified in the mesh as an over-
density of Voronoi cells. The runs with larger mass ratio shows a

c� 2012 RAS, MNRAS 000, ??–??

8 Muñoz et al.

Figure 6. Zoomed-in projected gas density in units of M⇥ AU�2 at six different times around pericenter for configuration ‘Q1 ’.

fortunately, non of these approximations is a good substitute for
radiation hydrodynamics.

The implementation of an optically thin cooling function as
we have done in this work

4.2.1 Clump Identification

The identification of over-dense regions in circumstellar disk sim-
ulations is non-trivial owing to the large density contrast already
present in the “smooth” or stable initial conditions. It is desirable
to remove this background density field in order to identify signifi-
cant fluctuations that stand out respect to their surroundings. A

Our clump-finding method consists of four stages: (1) a
smoothed density field is obtained at each mesh-generating point by
averaging over 128 neighbors; (2) over-dense regions are identified
as those exceeding the smooth background by a factor of 5-10; (3)
over-dense cells are grouped into collections of clumps by means of
a friends-of-friends algorithm; and (4) the self-gravitating charac-
ter of these clumps is addressed by computing the ratio of thermal
to gravitational potential energy.

c� 2012 RAS, MNRAS 000, ??–??

Diego Munoz, 2013
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How to construct the Voronoi mesh
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Moving-mesh techniques for Astrophysical Gas Dynamics

How to construct the Voronoi mesh

Each Voronoi cell contains the space closest to 
its generating point

The Delaunay triangulation contains only 
triangles with an empty circumcircle. The
Delaunay tiangulation maximizes the minimum 
angle occurring among all triangles.

The centres of the circumcircles of the 
Delaunay triangles are the vertices of the 
Voronoi mesh. In fact, the two tessellations are 
the topological dual graph to each other.
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The fluxes are calculated with an exact Riemann solver in the 
frame of the moving cell boundary
 

SKETCH OF THE FLUX CALCULATION

The motion of the mesh 
generators uniquely 
determines the motion of all 
cell boundaries

Riemann solver
(in frame of cell face)

State left of cell face State right of cell face



Another kind of n-body
• After the hydrodynamics is mostly 

done, we need to worry about 
dynamics

• For planetary dynamics, precision 
requires direct integration of the 
equations of motion

• Easy: 4th order Runge-Kutta

• Efficient: Symplectic Methods, 
e.g. Wisdom-Holman Mapping

• Robust: Bulirsch-Stoer

Many dynamics problems are “Embarrassingly Parallel”
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