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Outline

● Basic concepts of Charm++
● Tutorial by S. Kale and the UIUC PPL group

● Charm++ paradigms: Chare arrays, method 
invocations, broadcasts, reductions

● Architecture of ChaNGa.
● Compiling and running Charm++ programs



  

Charm++

● C++-based parallel runtime system
● Composed of a set of globally-visible parallel objects that 

interact
● The objects interact by asynchronously invoking methods 

on each other

● Charm++ runtime
● Manages the parallel objects and (re)maps them to 

processes
● Provides scheduling, load balancing, and a host of other 

features, requiring little user intervention



  

Globally Visible Objects

● Certain “special” object instances are
● First-class citizens in the parallel address space
● With unique location-independent names

● Under the hood, the runtime handles locality and provides 
mechanisms to promote objects to the parallel space



  

Globally-Visible Methods

● How can objects communicate across address 
spaces?
● Just like a sequential language: use object 

reference to invoke a method
● Location independent handle
● Method invocation becomes a communication



  

Method-Driven Asynchronous Communication

● What happens if an object waits for a return 
value from a method invocation?
● Performance
● Latency



  

Design Principle:
Do not wait for remote completion

● Hence, method invocations should be asynchronous
● No return values

● Computations are driven by the incoming data
● Initiated by the sender or method caller



  

The Execution Model

● Several objects live on a single PE
● I.e. Core or processor

● As a result
●  Method invocations directed at objects 

on that processor will have to be stored 
in a pool,

● And a user-level scheduler will select 
one invocation from the queue and 
runs it to completion

● A PE is the entity that has one 
scheduler instance associated with it.



  

Message-driven Execution

● Execution is triggered by availability of a 
“message” (method invocation)

● When an entry method executes
● It may generate messages for other objects
● The RTS deposits them in the message Q on the 

target processor



  

Migratability

● Once the programmer has written the code 
without reference to processors, all of the 
communication is expressed among objects

● The system is free to migrate the objects 
across processors as and when it pleases
● It must ensure it can deliver method invocations to 

the objects, where ever they go
● This migratability turns out to be a key attribute for 

empowering  an adaptive runtime system



  

Load balancing

● Static
● Requires accurate cost model

● Dynamic
● Demanded by adaptive algorithms
● Work needs to be migrated with, e.g., particles

● Migratable Objects a natural solution
● Coupled with a load measurement infrastructure



  

Collections of Objects

● “Chare arrays”
● Structured: 1D, 2D, ..., 6D
● Unstructured: anything hashable
● Dense or Sparse
● Static – all created at once
● Dynamic – elements come and go

● Shadow arrays: share data but allow separate 
flow



  

Collections of Objects: 
Communication

● Point-to-point: to one element of a collection
● Broadcast: message to whole collection
● Multicast: message to subset of collection
● Reductions: message from (part of) collection
● Runtime system provides efficient delivery for 

all



  

Collections of Objects:
user and machine view



  

Groups and NodeGroups

● Non-migratable chare array
● One element per PE (Group) or SMP node 

(NodeGroup)
● Share data among objects on a PE or node

● E.g. Cooling table

● NodeGroups can have races.



  

Charm Array: Hello Example

mainmodule arr {

    readonly int arraySize;

    mainchare Main {

      entry Main(CkArgMsg );∗

      }

    array [1D] hello {

      entry hello();

      entry void printHello();

      }

}



  

Charm Array: Hello Example
#include ”arr.decl.h”

/ readonly / int arraySize;∗ ∗

struct Main : CBase Main {

   Main(CkArgMsg  msg) {∗

     arraySize = atoi(msg−>argv[1]);

     CProxy hello p = CProxy hello::ckNew(arraySize);

     p[0].printHello();

     }

};

struct hello : CBase hello {

   hello() { }

   hello(CkMigrateMessage ) { }∗

   void printHello() {

      CkPrintf(”%d: hello from %d\n”, CkMyPe(), thisIndex);

      if (thisIndex == arraySize − 1) CkExit();

      else thisProxy[thisIndex + 1].printHello();

      }

};

#include ”arr.def.h”



  

void pup(PUP::er &p) {

  Cbase_MyChare::pup(p);

  p | a;

  p | b;

  p | c;

  p(localArray, 
LOCAL_SIZE);

}

Migration: packing/unpacking data

class MyChare : public

        CBase MyChare {

  int a;

  float b;

  char c;

  float 

  localArray[LOCAL_SIZE];

};



  

Measurement Based Load 
Balancing

● Principle of Persistence
● Object communication patterns and computational loads tend 

to persist over time
● In spite of dynamic behavior

– Abrupt but infrequent changes
– Slow and small changes

● Runtime instrumentation
● Measures communication volume and computation time

● Measurement based load balancers
● Use the instrumented data-base periodically to make new 

decisions
● Many alternative strategies can use the database



  

ChaNGa Features

● N-body/SPH solver
● Very latency tolerant
● SMP aware
● Dynamic load balancing with choice of 

strategies
● Checkpointing (via migration to disk)
● Visualization



  

TreePiece: basic data structure

● A “vertical slice” of the 
tree, all the way to the 
root.

● Nodes are either:
● Internal
● External
● Boundary (shared)



  

Domain Decomposition

● Particles are 
identified by “Keys” 
(Warren & Salmon, 
1993)

● Keys also define 
domains

● Decomposition is a 
“sort”.



  

Domain Decomposition Options

● Space-filling curves
● Morton ordering
● Peano-Hilbert

● “Oct”: fully contained 
nodes
● Less communication
● Harder load balancing

● ORB (orthogonal 
recursive bisection)
● Poor gravity



  

Tree Building

● Sort on Keys: particles are in tree order
● Determine count of particles in each Node
● Assign NodeKey: each bit a left-right branch
● Stop at “buckets”: each leaf contains a few 

particles.
● Construct multipole moments

● Request moments of External Nodes

● Merge pieces on same address space.
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Overall treewalk structure
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Cache control flow
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SPH Walks

● Two phases: density then pressure
● Symmetric forces => Cached data is written 

back to home piece.
● Multistepping: still need density of neighbors 

and particles for which I am a neighbor
● Inverse neighbor search



  

Latency hiding strategies

● Multiple “treepieces” per core
● Division into multiple work units (all 

concurrently)
● Off processor gravity treewalk
● SPH treewalk
● Local gravity treewalk
● Ewald summation

● Method prioritization
● Data requests get high priority
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Overlap of Phases
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Load Balancing

● ORB load balancing:
● Treepiece centroids sent to load balancer
● Load balancer evenly divides work across x, y or z 

split.
● Minimizes communication

● MultistepLB
● Use load information from last timestep at current 

“rung”.



  

ORB3D Load Balancing



  

Multistepping: 3 rung example

613s
429s 228s



  

Performance Analysis
Using Projections

● Instrumentation and measurement
● Link program with -tracemode projections or summary
● Trace data is generated automatically during run
● User events can be easily inserted as needed

● Projections: visualization and analysis
● Scalable tool to analyze up to 300,000 log files
● A rich set of tool features : time profile, time lines, usage 

profile, histogram, extrema tool
● Detect performance problems: load imbalance, grain size, 

communication bottleneck, etc



  

Projections example:
Testing load balancing on 1024 processors

5.6s 6.1s



  

Time Lines with Message Back 
Tracing



  

Charm++ features in ChaNGa
● Computation/communication overlap
● Entry method prioritization
● Flexible, customizable load balancing 

framework
● Composability
● Object Oriented: reuse of existing code.
● Porting to new architectures

● Including GPGPUs



  

Availability

● Charm++: http://charm.cs.uiuc.edu
● ChaNGa download: 

http://software.astro.washington.edu/nchilada/
● Release information: 

http://hpcc.astro.washington.edu/tools/changa
.html

● Mailing list: changa-users@u.washington.edu

Acknowledgment: NSF-ITR, NSF-PRAC,
    NASA-AISR



  

GPU Manager

● User submits “work requests” with GPU kernel, 
associated buffers and callback

● System transfers memory between CPU and 
GPU, executes kernel, and returns via a 
callback

● GPU operations performed asynchronously
● Pipelined execution
● Consistent with Charm++ model
● Charm++ tools (profiler) available



  

GPU/CPU Timeline

CPU 1

GPU

CPU 2

CPU remote traversal

CPU local traversal

Incoming data
request

Outgoing data
reply

Network communication

GPU local force kernel

Kernel invocation

GPU remote force kernel
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