

ChaNGa

CHArm N-body GrAvity

Thomas Quinn

Graeme Lufkin

Joachim Stadel

James Wadsley

Greg Stinson

Laxmikant Kale

Lukasz Wesolowski

Harshitha Menon

Pritish Jetley

Gengbin Zheng

Celso Mendes

Filippo Gioachin

Amit Sharma

Edgar Solomonik

Orion Lawlor

Outline

● Basic concepts of Charm++
● Tutorial by S. Kale and the UIUC PPL group

● Charm++ paradigms: Chare arrays, method
invocations, broadcasts, reductions

● Architecture of ChaNGa.
● Compiling and running Charm++ programs

Charm++

● C++-based parallel runtime system
● Composed of a set of globally-visible parallel objects that

interact
● The objects interact by asynchronously invoking methods

on each other

● Charm++ runtime
● Manages the parallel objects and (re)maps them to

processes
● Provides scheduling, load balancing, and a host of other

features, requiring little user intervention

Globally Visible Objects

● Certain “special” object instances are
● First-class citizens in the parallel address space
● With unique location-independent names

● Under the hood, the runtime handles locality and provides
mechanisms to promote objects to the parallel space

Globally-Visible Methods

● How can objects communicate across address
spaces?
● Just like a sequential language: use object

reference to invoke a method
● Location independent handle
● Method invocation becomes a communication

Method-Driven Asynchronous Communication

● What happens if an object waits for a return
value from a method invocation?
● Performance
● Latency

Design Principle:
Do not wait for remote completion

● Hence, method invocations should be asynchronous
● No return values

● Computations are driven by the incoming data
● Initiated by the sender or method caller

The Execution Model

● Several objects live on a single PE
● I.e. Core or processor

● As a result
● Method invocations directed at objects

on that processor will have to be stored
in a pool,

● And a user-level scheduler will select
one invocation from the queue and
runs it to completion

● A PE is the entity that has one
scheduler instance associated with it.

Message-driven Execution

● Execution is triggered by availability of a
“message” (method invocation)

● When an entry method executes
● It may generate messages for other objects
● The RTS deposits them in the message Q on the

target processor

Migratability

● Once the programmer has written the code
without reference to processors, all of the
communication is expressed among objects

● The system is free to migrate the objects
across processors as and when it pleases
● It must ensure it can deliver method invocations to

the objects, where ever they go
● This migratability turns out to be a key attribute for

empowering an adaptive runtime system

Load balancing

● Static
● Requires accurate cost model

● Dynamic
● Demanded by adaptive algorithms
● Work needs to be migrated with, e.g., particles

● Migratable Objects a natural solution
● Coupled with a load measurement infrastructure

Collections of Objects

● “Chare arrays”
● Structured: 1D, 2D, ..., 6D
● Unstructured: anything hashable
● Dense or Sparse
● Static – all created at once
● Dynamic – elements come and go

● Shadow arrays: share data but allow separate
flow

Collections of Objects:
Communication

● Point-to-point: to one element of a collection
● Broadcast: message to whole collection
● Multicast: message to subset of collection
● Reductions: message from (part of) collection
● Runtime system provides efficient delivery for

all

Collections of Objects:
user and machine view

Groups and NodeGroups

● Non-migratable chare array
● One element per PE (Group) or SMP node

(NodeGroup)
● Share data among objects on a PE or node

● E.g. Cooling table

● NodeGroups can have races.

Charm Array: Hello Example

mainmodule arr {

 readonly int arraySize;

 mainchare Main {

 entry Main(CkArgMsg);∗

 }

 array [1D] hello {

 entry hello();

 entry void printHello();

 }

}

Charm Array: Hello Example
#include ”arr.decl.h”

/ readonly / int arraySize;∗ ∗

struct Main : CBase Main {

 Main(CkArgMsg msg) {∗

 arraySize = atoi(msg−>argv[1]);

 CProxy hello p = CProxy hello::ckNew(arraySize);

 p[0].printHello();

 }

};

struct hello : CBase hello {

 hello() { }

 hello(CkMigrateMessage) { }∗

 void printHello() {

 CkPrintf(”%d: hello from %d\n”, CkMyPe(), thisIndex);

 if (thisIndex == arraySize − 1) CkExit();

 else thisProxy[thisIndex + 1].printHello();

 }

};

#include ”arr.def.h”

void pup(PUP::er &p) {

 Cbase_MyChare::pup(p);

 p | a;

 p | b;

 p | c;

 p(localArray,
LOCAL_SIZE);

}

Migration: packing/unpacking data

class MyChare : public

 CBase MyChare {

 int a;

 float b;

 char c;

 float

 localArray[LOCAL_SIZE];

};

Measurement Based Load
Balancing

● Principle of Persistence
● Object communication patterns and computational loads tend

to persist over time
● In spite of dynamic behavior

– Abrupt but infrequent changes
– Slow and small changes

● Runtime instrumentation
● Measures communication volume and computation time

● Measurement based load balancers
● Use the instrumented data-base periodically to make new

decisions
● Many alternative strategies can use the database

ChaNGa Features

● N-body/SPH solver
● Very latency tolerant
● SMP aware
● Dynamic load balancing with choice of

strategies
● Checkpointing (via migration to disk)
● Visualization

TreePiece: basic data structure

● A “vertical slice” of the
tree, all the way to the
root.

● Nodes are either:
● Internal
● External
● Boundary (shared)

Domain Decomposition

● Particles are
identified by “Keys”
(Warren & Salmon,
1993)

● Keys also define
domains

● Decomposition is a
“sort”.

Domain Decomposition Options

● Space-filling curves
● Morton ordering
● Peano-Hilbert

● “Oct”: fully contained
nodes
● Less communication
● Harder load balancing

● ORB (orthogonal
recursive bisection)
● Poor gravity

Tree Building

● Sort on Keys: particles are in tree order
● Determine count of particles in each Node
● Assign NodeKey: each bit a left-right branch
● Stop at “buckets”: each leaf contains a few

particles.
● Construct multipole moments

● Request moments of External Nodes

● Merge pieces on same address space.

07/25/13 Parallel Programming Laboratory @ UIUC 28

Overall treewalk structure

07/25/13 Parallel Programming Laboratory @ UIUC 29

Cache control flow

07/25/13 Parallel Programming Laboratory @ UIUC 30

SPH Walks

● Two phases: density then pressure
● Symmetric forces => Cached data is written

back to home piece.
● Multistepping: still need density of neighbors

and particles for which I am a neighbor
● Inverse neighbor search

Latency hiding strategies

● Multiple “treepieces” per core
● Division into multiple work units (all

concurrently)
● Off processor gravity treewalk
● SPH treewalk
● Local gravity treewalk
● Ewald summation

● Method prioritization
● Data requests get high priority

07/25/13 Parallel Programming Laboratory @ UIUC 32

Overlap of Phases

07/25/13 Parallel Programming Laboratory @ UIUC 34

Load Balancing

● ORB load balancing:
● Treepiece centroids sent to load balancer
● Load balancer evenly divides work across x, y or z

split.
● Minimizes communication

● MultistepLB
● Use load information from last timestep at current

“rung”.

ORB3D Load Balancing

Multistepping: 3 rung example

613s
429s 228s

Performance Analysis
Using Projections

● Instrumentation and measurement
● Link program with -tracemode projections or summary
● Trace data is generated automatically during run
● User events can be easily inserted as needed

● Projections: visualization and analysis
● Scalable tool to analyze up to 300,000 log files
● A rich set of tool features : time profile, time lines, usage

profile, histogram, extrema tool
● Detect performance problems: load imbalance, grain size,

communication bottleneck, etc

Projections example:
Testing load balancing on 1024 processors

5.6s 6.1s

Time Lines with Message Back
Tracing

Charm++ features in ChaNGa
● Computation/communication overlap
● Entry method prioritization
● Flexible, customizable load balancing

framework
● Composability
● Object Oriented: reuse of existing code.
● Porting to new architectures

● Including GPGPUs

Availability

● Charm++: http://charm.cs.uiuc.edu
● ChaNGa download:

http://software.astro.washington.edu/nchilada/
● Release information:

http://hpcc.astro.washington.edu/tools/changa
.html

● Mailing list: changa-users@u.washington.edu

Acknowledgment: NSF-ITR, NSF-PRAC,
 NASA-AISR

GPU Manager

● User submits “work requests” with GPU kernel,
associated buffers and callback

● System transfers memory between CPU and
GPU, executes kernel, and returns via a
callback

● GPU operations performed asynchronously
● Pipelined execution
● Consistent with Charm++ model
● Charm++ tools (profiler) available

GPU/CPU Timeline

CPU 1

GPU

CPU 2

CPU remote traversal

CPU local traversal

Incoming data
request

Outgoing data
reply

Network communication

GPU local force kernel

Kernel invocation

GPU remote force kernel

07/25/13 Parallel Programming Laboratory @ UIUC 50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50

