

Parallel Paradigms
and Techniques

Outline

● Motivation
● MPI paradigm
● OpenMP paradigm
● MPI vs. High Level Languages
● Declarative Languages
● Map Reduce and Hadoop
● Shared Global Address Space Languages
● GPUs

Why Parallel?

H. Sutter, “The Free Lunch is Over”, 2005, 2009

The future of supercomputing?

756 cores on 42 cards
500 watts

Parallelism Everywhere

● In the processor:
● Pipelining
● Superscalar

● In chip
● multiple cores
● hyperthreading

● On the graphics card
● Pipelining
● Many cores

MPI Overview

● Defacto standard on all large machines.
● Minimal infrastructure (shared-nothing)
● Run (usually) the same code on many cores
● Unique ID is assigned to each core
● Information is exchanged via library calls

● Point-to-point
● Collective

MPI Simple Example
 #include "mpi.h"
 #include <stdio.h>
 int main(argc,argv)
 int argc;
 char *argv[]; {
 int numtasks, rank, len, rc;
 char hostname[MPI_MAX_PROCESSOR_NAME];
 rc = MPI_Init(&argc,&argv);
 if (rc != MPI_SUCCESS) {
 printf ("Error starting MPI program. Terminating.\n");
 MPI_Abort(MPI_COMM_WORLD, rc);
 }
 MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
 MPI_Comm_rank(MPI_COMM_WORLD,&rank);
 MPI_Get_processor_name(hostname, &len);
 printf ("Number of tasks= %d My rank= %d Running on %s\n",
numtasks,rank,hostname);
 /******* do some work *******/
 MPI_Finalize();
 }

MPI and deadlocks
#include <stdio.h>
#include "mpi.h"
#define MSGLEN 2048 /* length of message in elements */
#define TAG_A 100
#define TAG_B 200
main(int argc, char **argv) {
 float message1 [MSGLEN], message2 [MSGLEN];
 int rank, i; MPI_Status status; /* status of communication */
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 for (i=0; i<MSGLEN; i++) {
 message1[i] = 100; message2[i] = -100; }
 if (rank == 0) {
 MPI_Send(message1,MSGLEN,MPI_FLOAT, 1, TAG_A, MPI_COMM_WORLD);
 MPI_Recv(message2,MSGLEN,MPI_FLOAT, 1, TAG_B, MPI_COMM_WORLD,
&status);
 } else if (rank == 1) {
 MPI_Send(message1,MSGLEN,MPI_FLOAT,0,TAG_B, MPI_COMM_WORLD);
 MPI_Recv(message2,MSGLEN,MPI_FLOAT,0,TAG_A, MPI_COMM_WORLD,
&status);
 }
 MPI_Finalize();
}

Deadlock solutions

● Immediate calls
MPI_Isend (message1, MSGLEN, MPI_FLOAT, dest, send_tag,

 MPI_COMM_WORLD, &request);

MPI_Recv (message2, MSGLEN, MPI_FLOAT, source, recv_tag,

 MPI_COMM_WORLD, &status);

MPI_Wait (&request, &status);

● Ordered send/receive
● Buffered sends

MPI: collectives

● MPI_Barrier()
● MPI_Bcast()

● read_params.f90
call MPI_BCAST(infile,80,MPI_CHARACTER,0,MPI_COMM_WORLD,ierr)

● MPI_Scatter()
● MPI_Gather()
● MPI_Reduce()
● Use these over point-to-point if possible

Simple example from RAMSES

 ! Compute global quantities
 comm_buffin(1)=mass_loc
 comm_buffin(2)=ekin_loc
 comm_buffin(3)=eint_loc
 call MPI_ALLREDUCE(comm_buffin,comm_buffout,3,
 MPI_DOUBLE_PRECISION,MPI_SUM,&
 &MPI_COMM_WORLD,info)
 call MPI_ALLREDUCE(dt_loc,dt_all,1,
 MPI_DOUBLE_PRECISION,MPI_MIN,&
 &MPI_COMM_WORLD,info)
 mass_all=comm_buffout(1)
 ekin_all=comm_buffout(2)
 eint_all=comm_buffout(3)

MPI summary

● Standard: you can expect the MPI
implementation to be high quality on most
supercomputers.

● Exquisite control over data movement and
thread execution
● No conflict on who owns what data: messages must

be explicitly sent/received.

● Do you want this much control?

OpenMP Overview

● Easier (generally) to use than MPI
● Details handled by the compiler
● No apparent data movement

● But machine could move data at a performance
cost (NUMA)

● Suitable for single machine (which are almost
all multi-core)

● Can be combined with MPI programs

OpenMP Simple Example
#include <omp.h>
#include <stdio.h>
int main (int argc, char *argv[]) {
 int th_id, nthreads;
#pragma omp parallel private(th_id)
 {
 th_id = omp_get_thread_num();
 printf("Hello World from thread %d\n", th_id);
#pragma omp barrier
 if (th_id == 0) {
 nthreads = omp_get_num_threads();
 printf("There are %d threads\n",nthreads);
 }
 }
 return 0;
}

OpenMP: race conditions

int sum = 0, loc_sum = 0;
/*forks off the threads and starts the work-
sharing construct*/
#pragma omp parallel for private(w,loc_sum)
 schedule(static,1)
{
 for(i = 0; i < N; i++) {
 w = i*i;
 loc_sum = loc_sum + w*a[i];
 }
#pragma omp critical
 sum = sum + loc_sum;
 }
printf("\n %d",sum);

OpenMP Summary

● Easy to partially parallelize existing code
● Requires shared memory machine and

compiler support
● Care must be taken concerning threads

read/writing the same memory

Latest Machines

● Blue Waters:
– 760k cores in 25k nodes; 1.5PB; 3k GPUs

● Stampede
– 50k+ cores in 3k+ nodes; 150k+ MIC cores

● Titan
– 300k cores; 18.7k nodes, 18.7k GPUs

● “Path to Exascale”
– Extremely wide parallelism

– Heterogeneous

Latest Machines

● Do we need them?
– Yes! Planet formation to cosmology.

● Will MPI programs just scale?
– So far, so good: astrophysicists are smart and

industrious.

– Mixed shared memory/messaging/accelerator gives
new level of difficulty.

– MPI/OpenMP/OpenAcc?

Advanced Parallel Programming

Is there life beyond MPI?

Parallel Programming in MPI

● Good performance
● Highly portable: de facto standard
● Poor match to some architectures

– Active Messages, Shared Memory

● New machines are hybrid architectures
– Multicore, Vector, RDMA, GPU, Xeon Phi

● Parallel Assembly?
– Processors => registers?

Parallel Programming in High
Level Languages

● Abstraction allows easy expression of new
algorithms

● Low level architecture is hidden (or
abstracted)

● Integrated debugging/performance tools
● Sometimes a poor mapping of algorithm onto

the language
● Steep learning curve

Parallel Programming Hierarchy

● Decomposition of computation into parallel
components
– Parallelizing compiler, Chapel

● Mapping of components to processors
– Charm++

● Scheduling of components
– OpenMP, HPF

● Expressing the above in data movement and
thread execution
– MPI

Language Requirements

● General Purpose
● Expressive for application domain

– Including matching representations: *(a + i) vs a[i]

● High Level
● Efficiency/obvious cost model
● Modularity and Reusability

– Context independent libraries

– Similar to/interoperable with existing languages

Declarative Languages

● SQL example:

SELECT SUM(L_Bol) FROM stars WHERE
tform > 12.0

● Performance through abstraction
● Limited expressivity, otherwise

– Complicated

– Slow (UDF)

● Optimizer is critical

Map Reduce & Hadoop

● Map: function produces (key, value) pairs
● Reduce: collects Map output
● Pig: SQL-like query language
● Effective data reduction framework
● Suitability for

HPC?

Array Languages: e.g., CAF, UPC

● Arrays distributed across images
● Each processor can access data on other

processors via co-array syntax

call sync_all(/up, down/)

new_A(1:ncol) = new_A(1:ncol)
+A(1:ncol)[up] + A(1:ncol)[down]

call sync_all(/up, down/)

● Easy expression of array model
● Cost transparent

Charm++

● Parallel library and run-time system
● User decomposes problem into parallel

components
● Run-time maps components onto processors;

schedules execution
● Not a language: more work for the user.

GPUs and Parallelism

● GPU: the ultimate SIMD machine
● 100,000+ vertices

– One operation: coordinate transform
● 1,000,000+ pixels

– One operation: shade to RGBA color

● Independent input data
● No data hazards

● No control hazards
● Regular memory access

CUDA Programming model

● Compute device
● Coprocessor to the CPU
● Has own RAM

● Data-parallel code is run in kernels on many
threads

● Threads:
● Lightweight, little creation overhead
● Need 1000s for full efficiency

● Lots of work, limited data transfer for good
performance

CUDA memory model

Global memory
allocated
by host

 32

Model to Device Mapping
• Hardware assigns blocks to available

processors
– But concurrency can be limited by hardware

resources.

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

time

 33

CUDA Host-Device Data Transfer

• Example:
– Transfer a float array
– M is in host memory and Md is in device memory

• Md allocated with CudaMalloc()

– cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

 34

Programming Model:
Square Matrix Multiplication Example

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

• P = M * N of size WIDTH x WIDTH

• Without tiling:
– One thread calculates one

element of P
– M and N are loaded WIDTH times

from global memory

 35

Nd

Md Pd

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Kernel Function
 Pvalue = 0;
 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}

ty

tx

ty

tx

k

k

 36

 // Setup the execution configuration

 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Kernel Invocation
(Host-side Code)

 37

Implementation of CUDA Memories

• Each thread can:
– Read/write per-thread

registers

– Read/write per-thread
local memory

– Read/write per-block
shared memory

– Read/write per-grid global
memory

– Read/only per-grid
constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

 38

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
0 1 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Break up the execution of the
kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd

 39

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
 __shared __float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared __float Nds[TILE_WIDTH][TILE_WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Collaborative loading of Md and Nd tiles into shared memory

Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
 Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
__syncthreads();
 for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += Mds[ty][k] * Nds[k][tx];
 __syncthreads();
 }
 Pd[Row*Width + Col] = Pvalue;
}

Organizing the Force for the GPU

● For each bucket, treewalk produces list of
nodes and particles to be interacted

● Interaction on p
i
 from n

j
 is I

ij

● I is P by N matrix where
● P = particles in bucket
● N = number of interacting nodes (1000s)

● Organize into blocks of size T < N x P

Force Kernel Optimization

More particles->fewer loads
More particles->larger shared memory use

Fewer executing blocks

Kernel Optimization Results

Optimum at 128 threads, 16 particles, 8 nodes/block

block

GPU summary

● GPUs enable parallelism at a very fine level
(similar to OpenMP)

● CUDA/OpenCL enables portable (device
independent) codes

● Good performance requires tuning to the device

Programmer: [Over]
decomposition into virtual
processors

Runtime: Assigns VPs to
processors

Enables adaptive runtime
strategies

User View

System implementation

• Software engineering
– Number of virtual processors can

be independently controlled
– Separate VPs for different

modules

• Message driven execution
– Adaptive overlap of

communication

• Dynamic mapping
– Heterogeneous clusters

• Vacate, adjust to speed,
share

– Automatic checkpointing
– Change set of processors used
– Automatic dynamic load

balancing
– Communication optimization

Benefits

Charm++: Migratable Objects

User view

System View

Gravity Implementations

● Standard Tree-code
● “Send”: distribute particles to tree nodes as

the walk proceeds.
– Naturally expressed in Charm++

– Extremely communication intensive

● “Cache”: request treenodes from off
processor as they are needed.
– More complicated programming

– “Cache” is now part of the language

ChaNGa Features

● Tree-based gravity solver
● High order multipole expansion
● Periodic boundaries (if needed)
● SPH: (Gasoline compatible)
● Individual multiple timesteps
● Dynamic load balancing with choice of

strategies
● Checkpointing (via migration to disk)
● Visualization

07/24/13 Parallel Programming Laboratory @ UIUC 49

Overall structure

07/24/13 Parallel Programming Laboratory @ UIUC 50

Remote/local latency hiding
Clustered data on 1,024 BlueGene/L processors

5.0s

Remote data work

Local data work

07/24/13 Parallel Programming Laboratory @ UIUC 51

Load balancing with GreedyLB
Zoom In 5M on 1,024 BlueGene/L processors

5.6s 6.1s

4x messages

07/24/13 Parallel Programming Laboratory @ UIUC 52

Load balancing with OrbRefineLB
Zoom in 5M on 1,024 BlueGene/L processors

5.6s 5.0s

07/24/13 Parallel Programming Laboratory @ UIUC 53

Scaling with load balancing
N

um
be

r
of

 P
ro

ce
ss

or
s

x
E

xe
cu

tio
n

T
im

e
pe

r
Ite

ra
tio

n
(s

)

07/24/13 Parallel Programming Laboratory @ UIUC 54

Overlap of Phases

Cosmo Loadbalancer

● Use Charm++ measurement based load
balancer

● Modification: provide LB database with
information about timestepping.
– “Large timestep”: balance based on previous

Large step

– “Small step” balance based on previous small
step

Results on 3 rung example

613s
429s 228s

Multistep Scaling

SPH Scaling

ChaNGa on GPU clusters

● Immense computational power
● Feeding the monster is a problem
● Charm++ GPU Manager

– User submits work requests with callback

– System transfers memory, executes, returns via
callback

– GPU operates asynchronously

– Pipelined execution

Execution of Work Requests

GPU Scaling

GPU optimization

Summary

● Successfully created highly scalable code in
HLL
– Computation/communication overlap

– Object migration for LB and Checkpoints

– Method prioritization

– GPU Manager framework

● HLL not a silver bullet
– Communication needs to be considered

– “Productivity” unclear
● Real Programmers write Fortran in any language

Thomas Quinn

Graeme Lufkin

Joachim Stadel

James Wadsley

Laxmikant Kale

Filippo Gioachin

Pritish Jetley

Celso Mendes

Amit Sharma

Lukasz Wesolowski

Edgar Solomonik

Availability

● Charm++: http://charm.cs.uiuc.edu
● ChaNGa download:

http://software.astro.washington.edu/nchilada/
● Release information:

http://hpcc.astro.washington.edu/tools/changa
.html

● Mailing list: changa-users@u.washington.edu

http://charm.cs.uiuc.edu/
http://software.astro.washington.edu/nchilada/
http://hpcc.astro.washington.edu/tools/changa.html
http://hpcc.astro.washington.edu/tools/changa.html
mailto:changa-users@u.washington.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Transparent Scalability
	CUDA Host-Device Data Transfer (cont.)
	Programming Model: Square Matrix Multiplication Example
	Step 4: Kernel Function (cont.)
	Step 5: Kernel Invocation (Host-side Code)
	G80 Implementation of CUDA Memories
	Tiled Multiply
	Tiled Matrix Multiplication Kernel
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

