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N-body: what is N?

● Continuous distribution represented by particles
● Particles are a sample of (mass) distribution

● f(x, v, t)
● Explicit conservation of mass

● Even for particulate matter (dust, dark matter)
● N(simulation) << N(physical)



  

Why I am a Tree Hugger

● Dynamic Range
● Molecular cloud core size: ~ .1pc
● Hill radius of Earth: ~ .01 AU
● 1e19 grid cells!

● Geometry
● Spherical: Cloud core
● Planar: Proto-planetary Disk
● Spherical again: planets
● Binary stars ...



  

Gravity

● Poisson's equation:
● Elliptical PDE: solution depends on all 

boundaries
● Linear: if eigenfunctions can be found then 

solution can be constructed by expressing 
density in terms of these functions:
● E.g., Fourier Transforms, Spherical harmonics

● But these can't be (easily) constructed for 
arbitrary points in space.



  

Multipole Expansions

● Poisson Equation:

● Integral Form:
● Using N-bodies:

● (but note softening/smoothing issue)
● We naively have:
● Expensive!



  

Multipole Expansions

● For x >> |x'|,
● Terms scale as

● Hence “theta” = s/r is a measure of accuracy

S = max(x')
r = |x|



  

Multipole Moments

● In Cartesian coordinates:

●

● More complicated, but quicker

● For large x, forces due to all particles in x' evaluated 
with a few operations.

● Local expansions are also possible (FMM):

See Greengard 1988 thesis



  

Multipole Accuracy Comparison

Quadrapole

Hexadecapole



  

Trees: divide et impera

● “... most important nonlinear structures in 
computer algorithms.”  (Knuth ACP)

● A root node + disjoint set of subtrees
● Leaf: a node with no subtrees
● Many representations:

● Node + child pointers
● Node + parent pointers
● heap

● Divide and conquer a common paradigm:
● e.g. Quicksort.



  

Spatial Trees

● Orthogonal Recursive Bisection
● Split the median particle: a balanced tree (k-d tree)
● Guaranteed maximum depth



  

Balanced Tree Representation

● Array of nodes: nodes[N]
● Index of first child of node n = 2*n
● Index of second child of node n = 2*n + 1
● Index of parent of node n = n >> 1
● No pointers or recursion needed for traversal



  

Oct Tree (or Barnes-Hut)

● See Barnes & Hut, 1986, Nature
● Split cubical node into 8 equal cubes
● Nodes are small and nearly spherical

● Small multipole moments

● Not balanced



  

Spatial Binary Tree

● Bisect longest dimension of bounding box
● Split to bisect space
● Not balanced
● More adaptable to disks



  

Gravity Algorithm

● Hierarchically divide space into cells
● The force on a particle is its interaction with a 

cell
● If the multipole expansion is valid then the 

interaction is the multipole expansion
● If not, the interaction is the sum of the 

interactions with the cells children.
● If cell is a leaf (or “bucket”) interact with the 

contained particles.
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Basic algorithm ...

● Barnes-Hut approximation: O(nlogn)
– Influence from distant particles combined into multipole 

moment
– Traversal stops when multipole is accurate



  

The opening criterion

● An open radius is only calculated once for each 
cell: r_open ~ r_max/theta



  

Efficient Walking

● Walk a high level node
● Determine all cells with acceptable expansions
● These cells are also acceptable for all children
● The other cells need to be checked when the 

node's children are walked.

● Go through check list with child nodes
● Construct final interaction list at bucket level. 



  

Neighbor finding walk (SPH)

● Use a priority queue (heap or loser tree) to 
track distance to k-th nearest neighbor

● Start at bucket containing particle.
● Search parent cell for uncles that overlap 

search ball
● Descend each child of uncle which overlaps 

search ball
● Replace particles in priority queue with found 

particles. 



  

Inverse Neighbor Finding

● Which particles consider me a neighbor?
● Search for particles with a smoothing length 

that encloses me.
● Cells have bounding boxes of all smoothing 

radii of the particles they contain
● Walk similar to neighbor finding.
● Useful when Nactive << Ntotal



  

Periodic Boundaries

● For shells in an infinite Universe:
● F(r) ~ GM(r)/(r^2) ~ constant at each radius
● Sum will not converge!

● TreePM
● Calculate long distance forces using Mesh and FFT

● Ewald Summation
● Split the sum into 2 converging parts.



  

TreePM (Gadget)

● FFT is fast (+)
● FFT has lots of communication (-)
● Available fast libraries: FFTW (+)
● Inaccuracies at the FFT grid scale (-)

● Transition between grid and tree

● Tree walk is only local (+)



  

Ewald Summation

● Split Green's function:

●

● Modified Green's function:

●

● Store differences between this and 1/r in large 
array.

● Perform lookup for each force calculation.



  

Ewald Reduced Cell Multipole

● Perform walk over fundamental cube an a 
number of replicas (e.g. 26 neighbors)

● Calculate forces due to Ewald sum of multipole 
moments of root cell of fundamental cube.

● Spatial sum modified to avoid double counting.
● Algebraically complex
● Sum is somewhat expensive (-)
● Efficient in parallel (+)



  

Force Calculation Overview

● Build Tree (top down)
● Calculate multipole moments and opening 

radius (bottom up)
● Walk nodes then buckets, constructing 

interaction lists
● Calculate force on particles in a bucket using 

interaction lists



  

Time stepping

● An N-body system is Hamiltonian
● Invariant under time translation
● Phase space density preserved

● Preserve these properties in a numerical 
integration by Exactly integrating an 
Approximate Hamiltonian

● Operator Splitting: 1st applying part of a 
Hamiltonian, then applying the 2nd part is 
equivalent to an approximate Hamiltonian



  

Symplectic Integrators for
Planetary Systems

● Split into Kepler and Interaction Hamiltonian
● Integrate Kepler (advance mean anomaly)
● Integrate interaction (planets fixed in space, but 

velocities are changed)
● Mixed Variable Symplectic integrator (Wisdom 

& Holman,  1993)



  

Time Stepping

● Consider

● Where

● Hamilton's equations give:

● This is Leap Frog!

● Obeys a Hamiltonian: 

Saha & Tremaine 1992



  

Leap Frog

● Advance positions by 1/2 timestep using old 
velocities (Drift)

● Advance velocities full timestep using forces 
from particle positions at 1/2 step (Kick)

● Advance positions by 1/2 timestep using new 
velocities (Drift)

● 2nd order in time
● Can also do Kick-Drift-Kick
● If forces are velocity dependent: need predicted 

velocity for the Kick



  

Leapfrog vs. Runge Kutta



  

Planetismal Dynamics Example
● Local patch approximation: Wisdom & 

Tremaine 1988
● Hill's equations:

● Hamiltonian, despite v dependent forces
● Split into separately integrable parts (Quinn et 

al 2012)



  

Hill's Equations, Symplectic vs. not



  

Hierarchical Timestepping

● Large dynamic range in density implies large 
range in timescales:

●

● Timesteps organized in power of 2 “rungs”



  

Symplectic Variable Timesteps?

● At a minimum, must be reversible
● Because of timestep decision, reversibility is 

expensive or impossible.
● Trial timesteps and implicit step choices
● Force splitting schemes

● At least minimize time asymmetries:
● Make timestep choice where the acceleration is 

calculated.

=> KDK scheme
● KDK more efficient and better momentum 

conservation.



  

Timestep Criteria

● EpsAccStep: dt ~ sqrt(softening/acceleration)
● DensityStep: dt ~ sqrt(1/density)

● GravStep: dt ~ sqrt(r
ij

3/(m
i
 + m

j
))

● Courant: smoothing/sound speed
● Diffusion: dt ~ dx2/D
● See M. Zemp et al 2007 for an “optimal 

criterion” for gravity



  

Gravitational Softening
● Recall: we are solving the BE, and particles 

sample f(z).

●

● The standard sum is a Monte-Carlo integral.

● The 1/|x – x'| term is not well suited to this.

● Introduce softening to minimize force error

● Truelove criterion: resolve Jeans' length

● Pressure supports against gravitational collapse

● Does not effect two body relaxation time!

● Ultimately a computational cost decision



  

Resolving Jeans Mass

● Jeans Length

● Jeans Mass

● Need to resolve this, or not doing hydro!
● Note non-convergence of isothermal gas.



  

SPH advantages

● Naturally partners with a particle gravity code
● Arbitrary geometry
● Perfect advection
● Galilean invariant
● No intrinsic dissipation 
● Fast (depending on neighbor finding)
● Easy to implement
● Flexibility with Equations of State



  

Basic principles of SPH

● Model the fluid as a collection of elements 
represented by particles

● Move particles using Lagrangian forms of the 
fluid equations

● Assign thermodynamic properties to the 
particles.

● Some properties determined by local 
averages

● Use an interpolation method to get these 
averages from local particles.



  

Interpolation

● The interpolant of any function f(r) is:

● h is the smoothing length and determines the 
extent of the averaging volume.

● W is the smoothing kernel which satisfies:



  

Interpolation for finite points

● In general:



  

Calculating Gradients

● Integration by parts can move the derivative:

●

● Better accuracy is obtained with gradients of 
density weighted quantities:



  

The Weighting Function

● Requirements:
● Continuous 2nd derivatives
● Compact
● Symmetric

● Cubic Spline satisfies these requirements
● Symmetrize explicitly
● Maintain uniform particle distribution



  

Finding the Neighbors

● Fixed “h”: range search
● “Ball search”: recursively descend tree using 

“bounds-intersect-ball” test

● Variable “h”: kth nearest neighbor search
● Search tree using a shrinking ball.
● Start with nodes close to the particle considered.



  

(Classical) SPH equations

● Density:

● Momentum

●

● Energy

● Alternatively: Entropy Equation (comparable 
performance)



  

Artificial Viscosity

● Momentum diffusion necessary to stabilize all 
numerical hydro formulations.



  

Artificial Viscosity & Diffusion

● All hydro codes introduce diffusion for stability
● SPH only has diffusion if explicitly added
● High Reynold numbers flows have turbulence 

below the resolution which can be modeled by 
diffusion (Smagorinsky 1963)



  

Bubble comparison

Wadsley et al 2008



  

Metal Diffusion

● Turbulence should also diffuse metals.
● For a scalar, A:

Shen, Wadsley & Stinson 2010



  

Cooling

● Cooling timescales can be short compared to a 
dynamical time

● Implicit (stiff) solver for thermal energy, assume 
work and density are constant.

● Chemical reaction networks have similar 
properties: use same solver for 
chemistry/thermal energy concurrently.  
(CHEMEQ2, Mott, D.R. & Oran, E.S., 2001)



  

SPH disadvantages

● Low order
● No Riemann solver to handle shocks, etc.
● Grad 1 != 0 !?!

● Poor particle distribution => large errors
● Kernel choices matter

● E.g. Clumping instability

● Robust
● Keeps going even if the results are garbage



  

Summary

● Continuous media can be represented by 
collections of particles.
● Advantages

– Lagrangian, adaptable
● Disadvantages

– Low order, noise

● Trees are useful for organizing the resulting 
unstructured data.
● Naturally adaptable
● Usually have good worst case performance



  

Timestep Overview

● Adjust timesteps
● “Kick” velocities
● “Drift” Particles
● Domain Decompose
● Build tree, calculate Moments
● Calculate gravity forces
● Calculate SPH forces (predicted v & u needed)
● “Kick” velocities



  

Old Comparison
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