Cosmological Simulations With Self-Interacting DM

Miguel Rocha (UCI) Santa Cruz 2012

James Bullock

Annika Peter M

Manoj Kaplinghat

Shea Garrison-Kimmel's Jose Onorbe

Cosmological Simulations With Self-Interacting CDM

Miguel Rocha (UCI) Santa Cruz 2012

Cosmological Simulations With Self-Interacting CDM

Miguel Rocha (UCI) Santa Cruz 2012

With all the good things that "Coldness" brings

- Right Structure
- Right Clustering
- Right Abundances

All large scale properties > ~ | Mpc

With all the good things that "Coldness" brings

- Right Structure
- Right Clustering
- Right Abundances

All large scale properties >~| Mpc

We owe all this to just it being "Cold"!

Cold + ?

What else can we add?

Particle Physics Motivations:

Pospelov et al. 2008, Arkani-Hamed et al. 2009, Ackerman et al. 2009, Feng et al. 2009, 2010 Loeb & Weiner 2011, Stiele et al. 2011, Peter 2012

Particle Physics Motivations:

 DM Self-Interactions as strong as the standard model strong interactions are allowed by primordial nucleosynthesis

Pospelov et al. 2008, Arkani-Hamed et al. 2009, Ackerman et al. 2009, Feng et al. 2009,2010 Loeb & Weiner 2011, Stiele et al. 2011, Peter 2012

Particle Physics Motivations:

 DM Self-Interactions as strong as the standard model strong interactions are allowed by primordial nucleosynthesis.Wimpless Miracle!

Pospelov et al. 2008, Arkani-Hamed et al. 2009, Ackerman et al. 2009, Feng et al. 2009,2010 Loeb & Weiner 2011, Stiele et al. 2011, Peter 2012

Particle Physics Motivations:

- DM Self-Interactions as strong as the standard model strong interactions are allowed by primordial nucleosynthesis. Wimpless Miracle!
- They are a generic consequences of hidden-sector extensions to the Standard Model

Pospelov et al. 2008, Arkani-Hamed et al. 2009, Ackerman et al. 2009, Feng et al. 2009,2010 Loeb & Weiner 2011, Stiele et al. 2011, Peter 2012

Particle Physics Motivations:

- DM Self-Interactions as strong as the standard model strong interactions are allowed by primordial nucleosynthesis.Wimpless Miracle!
- They are a generic consequences of hidden-sector extensions to the Standard Model
- Even if dark sector particles have no couplings to the Standard Model particles they might experience strong interactions with themselves

Pospelov et al. 2008, Arkani-Hamed et al. 2009, Ackerman et al. 2009, Feng et al. 2009, 2010 Loeb & Weiner 2011, Stiele et al. 2011, Peter 2012

Astrophysical Motivations:

Spergerl & Steinhardt 2000 ($\sigma/m = 0.1-100 \text{ cm}^2/\text{g}$)

Astrophysical Motivations:

 Lower central densities and form constant density cores in DM halos

> Spergerl & Steinhardt 2000 ($\sigma/m = 0.1-100 \text{ cm}^2/\text{g}$)

Astrophysical Motivations:

- Lower central densities and form constant density cores in DM halos
- Reduce the number if subhalos through subhalo evaporation

Spergerl & Steinhardt 2000 ($\sigma/m = 0.1-100 \text{ cm}^2/\text{g}$)

Previous Constraints

Reference	Constraint [cm ² /g]	From	Problem
Yoshidal et. al 2000	σ/m < ~ 0.1	Cluster density core	One cluster
Dave et. al 2001	$\sigma/m = 0.1 - 10$	Dwarfs density Cores	Narrow mass range
Gnedin & Ostriker 2001	σ/m < 0.3	Subhalo evaporation	Overestimated subhalo evaporation
Miralda-Escude 2002	σ/m < 0.02	Halo shapes	Overestimated halo sphericity
Randall et al. 2008	σ/m < 0.7-1.25	Bullet Cluster	High central densities and relative vel.

Previous Constraints

Reference	Constraint [cm ² /g]] From	Problem
Yoshidal et. al 2000	σ/m < ~ 0.1	Cluster density core	One cluster
Dave et. al 2001	$\sigma/m = 0.1 - 10$	Dwarfs density Cores	Narrow mass range
Gnedin & Ostriker 2001	σ/m < 0.3	Subhalo evaporation	Overestimated subhalo evaporation
Miralda-Escude 2002	σ/m < 0.02	Halo shapes	Overestimated halo sphericity
Randall et al. 2008	σ/m < 0.7-1.25	Bullet Cluster	High central densities and relative vel.

Previous Constraints

Reference	Constraint [cm ² /g]	From	Problem
Yoshidal et. al 2000	σ/m < ~ 0.1	Cluster density core	One cluster
Dave et. al 2001	$\sigma/m = 0.1 - 10$	Dwarfs density Cores	Narrow mass range
Gnedin & Ostriker 2001	σ/m < 0.3	Subhalo evaporation	Overestimated subhalo evaporation
Peter et al. arXiv:1208.3026	σ/m < 1	Halo shapes	
Randall et al. 2008	σ/m < 0.7-1.25	Bullet Cluster	High central densities and relative vel.

Modeling DM Self-Iteractions

Revisiting the Simplest Model:

- Elastic
- Velocity Independent

Isotropic

$$\Gamma \simeq \rho \left(\sigma/m \right) v_{rms}$$

Modeling DM Self-Iteractions

Revisiting the Simplest Model:

- Elastic
- Velocity Independent

Isotropic

Modeling DM Self-Iteractions

Revisiting the Simplest Model:

- Elastic
- Velocity Independent

Isotropic

Pair-wise Scattering

New algorithm derived self-consistently from the Boltzmann equation

N-body particles are given a self-interacting smoothing length "hsi" to represent phase-space blobs

Rocha et al. 2012 arXiv:1208.3025

Pair-wise Scattering

New algorithm derived self-consistently from the Boltzmann equation

N-body particles are given a self-interacting smoothing length "hsi" to represent phase-space blobs

Simulation Set

50 Mpc/h Box: Np = 512^3, mp ~ 7e7 Msun

25 Mpc/h Box: Np = 512^3, mp ~9e6 Msun

Zoom halo Mvir = 5ell Msun, mp ~ 1.5e6 Msun

Zoom halo Mvir = 1e12 Msun, mp ~ 2e5 Msun

All of them run with $\sigma/m = 0, 1, 0.1 \text{ cm}^2/\text{g}$

Rocha et al. 2012 arXiv:1208.3025

Identical Large-Scale Sturcture

A+CDM

Rocha et al. 2012 arXiv:1208.3025

 $\frac{\Lambda + SIDM}{\sigma/m = 1 \text{ cm}^2/g}$

Identical abundance of halos at all redshifts

 $\frac{\Lambda + SIDM}{\sigma/m = 1 \text{ cm}^2/g}$

200 Kpc/h

Modest suppression of subhalo numbers

Rocha et al. 2012 arXiv:1208.3025

"Cold" Dark Matter + Self-Interactions

Astrophysical Motivations:

 Lower central densities and constant density cores in DM halos

 $\frac{\sigma/m}{\sigma/m} = 0.1$

Rocha et al. 2012 arXiv:1208.3025

Thursday, August 16, 2012

Density

Thursday, August 16, 2012

 $\sigma/m = 1 \text{ cm}^2/g$

 $\sigma/m = 1 \text{ cm}^2/g$

Comparison to observed core sizes

 $\sigma/m=1 \text{ cm}^2/g$ $\sigma/m=0.1 \text{ cm}^2/g$

Observed

50

Clusters 700-1000 km/s	IO-75 kpc Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	95-155 kpc	16-20 kpc
.ow-Mass Spirals)-130 km/s	0.5-8 kpc de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	3-10 kpc	0.6-2.5 kpc
1W dSphs 0-50 km/s	0.2-1 kpc Walker & Penarrubia 2011	0.9-3 kpc	0.2-0.6 kpc

Comparison to observed core sizes

	Observed	$\sigma/m=1 \text{ cm}^2/\text{g}$	$\sigma/m=0.1 \text{ cm}^2/\text{g}$
Clusters 700-1000 km/s	IO-75 kpc Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	95-155 kpc	16-20 kpc
Low-Mass Spirals 50-130 km/s	0.5-8 kpc de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	3-10 kpc	0.6-2.5 kpc
MW dSphs 20-50 km/s	0.2-1 kpc Walker & Penarrubia 2011	0.9-3 kpc	0.2-0.6 kpc

Comparison to observed core sizes

	Observed	$\sigma/m=1 \text{ cm}^2/\text{g}$	$\sigma/m=0.1 \text{ cm}^2/\text{g}$
Clusters 700-1000 km/s	IO-75 kpc Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	95-155 kpc	16-20 kpc
Low-Mass Spirals 0-130 km/s	0.5-8 kpc de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	3-19 kpc	0.6-2.5 kpc
MW dSphs 20-50 km/s	0.2-1 kpc Walker & Penarrubia 2011	0.9-3 kpc	0.2-0.6 kpc

5

Comparison to observed			
core sizes			
	Observed	$\sigma/m=1 \text{ cm}^2/g$	$\sigma/m=0.1 \text{ cm}^2/\text{g}$
Clusters 700-1000 km/s	IO-75 kpc Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	95-155 kpc	16-20 kpc
Low-Mass Spirals 50-130 km/s	0.5-8 kpc de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	3-10 kpc	0.6-2.5 kpc
MW dSphs 20-50 km/s	0.2-1 kpc Walker & Penarrubia 2011	0.9-3 kpc	0.2-0.6 kpc

Comparison to observed			
core densities			
	Observed	$\sigma/m=1 \text{ cm}^2/g$	$\sigma/m=0.1 \text{ cm}^2/\text{g}$
Clusters 700-1000 km/s	6-2.5 IO ⁻² M sun/pc ³ Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	0.5-0.4 10 ⁻² Msun/pc ³	4 10 -2 Msun/pc ³
Low-Mass Spirals 50-130 km/s	50-1 10 ⁻² Msun/pc ³ de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	2-1 10 ⁻² Msun/pc ³	20-10 10 ⁻² Msun/pc ³
MW dSphs 20-50 km/s	~10 10 ⁻² Msun/pc ³ Strigari et al. 2008, Wolf et al. 2010, Walker & Penarrubia 2011, Amorisco & Evans 2012, Wolf & Bullock 2012	4-2 10 ⁻² Msun/pc ³	50-20 10 ⁻² Msun/pc ³

Comparison to observed core densities

	Observed	$\sigma/m=1 \text{ cm}^2/\text{g}$	$\sigma/m=0.1 \text{ cm}^2/\text{g}$
Clusters 700-1000 km/s	6-2.5 IO ⁻² M sun/pc ³ Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	0.5-0.4 10 ⁻² Msun/pc ³	4 10 -2 Msun/pc ³
Low-Mass Spirals 0-130 km/s	50-1 10 ⁻² Msun/pc ³ de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	2-1 10 -2 Msun/pc ³	20-10 10 ⁻² Msun/pc ³
MW dSphs 20-50 km/s	~10 10 ⁻² Msun/pc ³ Strigari et al. 2008, Wolf et al. 2010, Walker & Penarrubia 2011, Amorisco & Evans 2012, Wolf & Bullock 2012	4-2 10 -2 Msun/pc ³	50-20 10 ⁻² Msun/pc ³

50-

M\ 20

Comparison to observed core densities

Comparison to observed			
core densities			
	Observed	$\sigma/m=1 \text{ cm}^2/\text{g}$	$\sigma/m=0.1 \text{ cm}^2/\text{g}$
Clusters 700-1000 km/s	6-2.5 IO ⁻² M sun/pc ³ Arabadjis et al. 2002, Sand et al. 2004, 2008, Saha et al 2006, Saha & Read 2009 Newman et al. 2009,2011	0.5-0.4 0 ⁻² Msun/pc ³	4 10-2 Msun/pc ³
Low-Mass Spirals 50-130 km/s	50-1 10 ⁻² Msun/pc ³ de Blok et al. 2001, Simon et al. 2005, Sanchez-Salcedo 2005, Kuzio de Naray et al. 2008,2010, Oh et al . 2011, Salucci et al. 2012	2-1 10 ⁻² Msun/pc ³	20-10 10 ⁻² Msun/pc ³
MW dSphs 20-50 km/s	~10 10 ⁻² Msun/pc ³ Strigari et al. 2008, Wolf et al. 2010, Walker & Penarrubia 2011, Amorisco & Evans 2012, Wolf & Bullock 2012	4-1 10-2 Msun/pc ³	This Solves TBTF 50-20 10 ⁻² Msun/pc ³

Conclusions

- It is interesting to look at the astrophysical effects of DM properties other than it being cold, if nothing else to provide constraints to particle physicist.
- Past constraints on SIDM are weaker than previously thought. Our simulations suggest that σ/m = I cm²/g is ruled out by the high DM central densities observed.
- With σ/m ~ 0.1 cm²/g we find that SIDM predicts central densities and core sizes consistent with observations at all scales, from MW dSphs to large galaxy clusters. And is an alternative possible solution to the cusp/core problem and TBTF.
- Higher resolution simulations are necessary to determine the scatter in our scaling relations and verify what our analytical model predicts for $\sigma/m \sim 0.1 \text{ cm}^2/\text{g}$