A Link Between Inner Mass Density and Quenching in SDSS Galaxies

> Jerome Fang (UCSC) Sandy Faber, David Koo, Avishai Dekel

Santa Cruz Galaxy Workshop August 15, 2012

Early SDSS work indicated that galaxy age is linked with structure.

Kauffmann+2003

Galaxies above a (fuzzy) <u>threshold</u> in M_* or μ_* tend to be old.

A tighter relation is found with μ_{*} .

A strong bulge is necessary* for a galaxy to be quenched.

SDSS; Bell 2008

galaxies are quenched.

not sufficient!

Only galaxies <u>above</u> the $n \sim 1.5$ threshold are quenched.

The details linking quenching to structure are still unclear.

Stellar Mass

4 Jerome Fang, SC Galaxy Workshop, Aug 15, 2012

A fundamental parameter?

A fixed threshold value?

Link to physical processes?

Features of our work

Use GALEX UV data to resolve the GV and highlight <u>recently</u> quenched galaxies.

Divide sample into mass bins to remove any global trends and to identify evolutionary tracks.

Use mass density within 1 kpc, Σ_1 , which probes conditions closer to central regions.

Present average mass profiles for a large sample of galaxies divided by mass and color.

Galaxies are divided into six stellar mass bins.

Sample definition

 $9.75 < \log M_*/M_{\odot} < 11.25$

Bins are 0.25 dex wide

Assume each slice is an evolutionary path.

Mass remains ~constant as galaxy evolves from red to blue. Mass profiles are computed from aperture photometry.

Fang+12, in prep

A plausible evolutionary track is seen in Σ_1 vs. NUV-*r* color.

 Σ_1 increases while a galaxy is blue.

A galaxy can quench above a threshold Σ_1 .

Threshold Σ_1 increases with stellar mass.

Σ_I = mass density within I-kpc radius (computed from mass profiles)

$\Sigma_{\rm I}$ in green and red galaxies is well-correlated with mass.

Outer mass density remains constant as galaxies evolve.

Blue galaxies have <u>brighter</u> outer disks than red galaxies...

...but <u>similar</u> outer <u>mass</u> <u>densities</u>.

It is <u>inner</u> mass density that builds up as galaxies quench.

High- Σ_1 blue galaxies look very similar to quenched objects.

 $0.04 < z < 0.05; 10.25 < \log M \le 10.5$

II Jerome Fang, SC Galaxy Workshop, Au₆ ..., _...

A tension between halo- vs. bulge-driven quenching?

Quenched fraction correlates better with halo mass.

A high- Σ_1 bulge is needed to be quenched.

12 Jerome Fang, SC Galaxy Workshop, Aug 15, 2012

A two-step quenching process driven by both the bulge and halo?

I. Removal (or stabilization) of gas in galaxy

Merger-triggered starburst AGN feedback Morphological quenching

All are linked with the growth of the galaxy bulge, traced by, e.g., Σ_1 .

(e.g., Mihos+1994, Hopkins+2006, Martig+2009)

2. Suppression of further gas accretion

Virial shock heating

Process is dependent on the $\underline{DM \text{ halo}}$, traced by, e.g., σ .

(e.g., Birnboim+2003, Dekel+2006)

A tight relation exists between $\Sigma_{\rm I}$ and velocity dispersion.

Correlation holds for galaxies of all colors.

Correlation implies σ_1 and Σ_1 both trace bulge growth equally effectively.

 Σ_1 - σ_1 relation can be used to "convert" between either quantity.

Develop an M_{BH} - Σ_1 relation?

Fang+12, in prep

Conclusions

At fixed stellar mass, Σ_1 increases in the blue cloud until it reaches a (mass-dependent) threshold, at which point galaxies can quench.

But the outer surface density remains ~constant as galaxies evolve from blue to red--the difference is in the bulge.

Quenching is a two-step process that requires (1) gas removal (bulge-driven) and (2) suppression of further gas infall (halo-driven).

 Σ_1 and σ_1 are strongly correlated for all galaxies, implying both trace bulge buildup equally well. Use Σ_1 for BH studies?