Large Populations of Gravitationally Unstable Galaxies

John Forbes UCSC Galaxy Workshop - August 15, 2012

With Mark Krumholz, Andi Burkert, Avishai Dekel

Disks at high redshift are gravitationally unstable

Elmegreen+ 2005

Genzel+ 2011

Disks at high redshift are gravitationally unstable

Bournaud+ 2011

Ceverino+ 2009

Galaxies are self-regulated near Q~1.

- Goal: Efficiently simulate disks self-regulated near Q=1 over cosmological times
- Strategy:
 - Solve hydro equations in the limit of a thin axisymmetric disk
 - Gas: $\Sigma(r,t) \sigma(r,t) Z(r,t)$
 - Stars: Σ_{*}(r,t,age) σ_{*}(r,t,age) Z_{*}(r,t,age)

Set the torque~viscosity so that gas will move to maintain Q=const. if it can

Model Overview

See: Krumholz & Burkert (2010), Forbes, Krumholz, & Burkert (2012)

A few more details

- Outflows w/ local mass loading factor = 1
- H₂-regulated star formation
- Metals generated via instantaneous recycling approximation - Stars heat to specified Q* via spiral instabilities

See:

Forbes, Krumholz, & Burkert (2012)

Accretion histories are generated stochastically from Neistein & Dekel (2008)

Accretion histories are generated stochastically from Neistein & Dekel (2008a)

The resulting galaxies:

Gas Column Density: Solar Masses / pc²

Wednesday, August 15, 2012

Radius (kpc)

10

SFR Density: Highly peaked at small radii at z=2

SFR Density Solar Masses / yr / kpc²

Radius (kpc)

SFR Density: Highly peaked at small radii at z=2 $\dot{\Sigma}_{*}^{SF} = \epsilon_{\rm ff} \, \frac{f_{H_2} \Sigma}{t_{\rm ff}}$ Radius (kpc) 15 20 12

A preliminary study in halo mass

M* - SFR relation

SFR (Solar Masses per year)

Stellar Mass (Solar Masses)

M* - SFR relation

Stellar Mass (Solar Masses)

How much does a galaxy know about its accretion rate?

SFR (Solar Masses per year)

Accretion rate (Solar Masses per year)

How much does a galaxy know about its accretion rate?

To conclude...

- Simulations performed using GIDGET, the Gravitational

http://www.ucolick.org/~jforbes/gidget.html

Instability-Dominated Galaxy Evolution Tool, available here:

To conclude...

- Simulations performed using GIDGET, the Gravitational

http://www.ucolick.org/~jforbes/gidget.html

- bars.
- variable accretion rates + physics of gravitational instability

Instability-Dominated Galaxy Evolution Tool, available here:

- Galaxies can be centrally quenched without AGN, mergers, or

- The intrinsic scatter in the SFR-M* relation may be explained by

Is Q=1 in nearby galaxies?

Romeo and Wiegert (2011)

Stellar ages (caution: no outward stellar migration)

Mass-weighted age (yrs)

Radius (kpc)

20

Velocity Dispersion (km/s)

Velocity Dispersions

Velocity Dispersions

Stellar Column Density

Stellar Column Density

H2 Fraction

H2 Fraction

