Dust Extinction in Star-forming Galaxies at 0.75<z<1.5 from HST/WFC3 Spectroscopy

Alberto Domínguez University of California, Riverside

in collaboration with Brian Siana & the WISP team

arXiv:1206.1867

Galaxy Workshop, Santa Cruz, CA August 13-17, 2012

What is and where is dust produced?

C-O core

Supernovae

ISM

Effects of the interstellar dust

Methodologies for studying dust extinction

UV slopes and infrared observations that probes stellar-continuum extinction (e. g. Meurer et al. 1999; Reddy et al. 2010; Bouwens et al. 2011)

Methodologies for studying dust extinction

Emission-line ratios such as Balmer emission lines that probes HII-regions extinction (e. g. Kennicutt et al. 1992; Hopkins et al. 2001; Brinchmann et al. 2004; Garn & Best 2010).

Transition of n	$3 \rightarrow 2$	$4 \rightarrow 2$	$5 \rightarrow 2$	$6 \rightarrow 2$					
Name	Ηα	Hβ	Ηδ	Ηγ					
Wavelength (Å)	6563	4861	4341	4102					
Balmer series									

$$E(B-V) = \frac{2.5}{k(\lambda_{H\beta}) - k(\lambda_{H\alpha})} \log_{10} \left[\frac{(H\alpha/H\beta)_{obs}}{(H\alpha/H\beta)_{int}} \right]$$

Dust extinction at z>0.5 from emission-line ratios

Sobral et al. 2012 at $z \sim 1.5$ $\rightarrow H\alpha/[O II]$ with [O II] being significantly dependent on metallicity. Ly et al. 2012 at $z \sim 0.5 \rightarrow$ combination of photometry and spectroscopy

The WFC3 Infrared Spectroscopic Parallel (WISP) survey

Pure parallel Hubble Space Telescope program (PI Matthew Malkan) > 900 orbits, ~ 200 high-latitude fields. The faintest galaxies are 3 times fainter than galaxies previously studied at $z \sim 1.5$.

G102: $0.80 \le \lambda \le 1.17 \ \mu m \ (R \sim 210)$ G141: $1.11 \le \lambda \le 1.67 \ \mu m \ (R \sim 130)$

Direct-imaging photometry: F475X, F600LP, F110W, F160W and IRAC 3.6 μm

Example of different spectral features in one G141 grism image.

Galaxy stacks at $0.75 \le z \le 1.5$

312 galaxies in 17 fields where both H α and H β fall simultaneously in the WISP spectral coverage \rightarrow 129 galaxies after cleaning

Rest-frame wavelength [Å]

Emission-line contamination

- H α and H β absorption (~ 25% in H β); BC03 models
- [N II] (~ 15% in the worst case); Erb et al. 2006
- AGNs; BPT diagram

Emission-line contamination

- H α and H β absorption (~ 25% in H β); BC03 models

Galaxy stacks at $0.75 \le z \le 1.5$

Balmer decrements at z ~ 1

Dust extinction at z ~ 1

Assuming Calzetti et al. 2000 attenuation law

Stellar vs. HII extinction

Conclusions

1.- The Hα/[O III] ratio is dependent on observed Hα luminosity.

2.- The Balmer decrement is correlated with observed H α luminosity and galaxy stellar mass at $z \sim 1$. The faintest galaxies are consistent with no dust extinction.

3.- Clear evolution of dust extinction where for a given observed Hα luminosity, galaxies are significantly less extinguished at higher redshifts. No evolution is found with galaxy stellar mass.

4.- The typical procedure of assuming a constant extinction for all luminosity significantly overestimate extinction for the lower luminosity galaxies.

5.- WISP will improve the galaxy statistic more than a factor 10.

6.- WISP will publish results on the galaxy Hα luminosity and mass/metallicity relation very soon.

Backup

Backup

Table 1

Emission-line ratios of stacked spectra in $0.75 \le z \le 1.5$

Stacks binned in H α luminosity, $X = L_{\mathrm{H}\alpha}/\mathrm{ergs^{-1}}$							
$41.49^{+0.17}_{-0.42}$	0.12 ± 0.04	5.13 ± 1.45					
$41.79_{-0.12}^{+0.07}$	0.15 ± 0.03	2.84 ± 0.63					
$41.99_{-0.11}^{+0.12}$	0.18 ± 0.03	2.57 ± 1.02					
$42.38_{-0.25}^{+0.99}$	0.22 ± 0.02	4.80 ± 1.69					
Stacks binned in galaxy stellar mass, $X = M_*/M_{\odot}$							
$8.40^{+0.53}_{-1.16}$	0.10 ± 0.03	4.67 ± 1.08					
$9.31_{-0.31}^{+0.25}$	0.16 ± 0.03	3.68 ± 0.98					
$9.90^{+0.26}_{-0.29}$	0.25 ± 0.03	1.65 ± 0.62					
$10.59_{-0.41}^{+0.74}$	0.18 ± 0.03	3.82 ± 1.89					
Stacks binned in H α equivalent width, $X = \mathrm{EW}_{\mathrm{H}\alpha}/\mathrm{\mathring{A}}$							
$1.67^{+0.21}_{-0.45}$	0.25 ± 0.04	2.91 ± 1.03					
$1.98^{+0.09}_{-0.11}$	0.26 ± 0.03	1.79 ± 0.58					
$2.16^{+0.10}_{-0.08}$	0.16 ± 0.03	5.14 ± 1.50					
$2.53_{-0.28}^{+0.79}$	0.03 ± 0.02	4.54 ± 1.18					
Note . — These are the values for plotting the BPT diagram shown in							

Figure 4.

Backup

Dust properties for WISP galaxies stacked binning in $H\alpha$ luminosity											
N^{a}	$\langle \log_{10}(L_{\mathrm{H}\alpha}/\mathrm{ergs^{-1}})\rangle$	$H_{\alpha}/H_{\beta}{}^{\rm b}$	$H_{\alpha}/H_{\beta}{}^{\rm c}$	$H_{\alpha}/H_{\beta}{}^{\rm d}$	$E(B-V)^{\rm e}$ [mag]	$A_{\mathrm{H}\alpha}{}^{\mathrm{e}}$ [mag]	A_V^{e} [mag]				
Full sample											
32	$41.49^{+0.17}_{-0.42}$	3.71 ± 1.06	3.23 ± 0.93	3.23 ± 0.93	0.11 ± 0.25	0.35 ± 0.82	0.43 ± 1.00				
32	$41.79_{-0.12}^{+0.07}$	3.78 ± 0.82	3.09 ± 0.68	2.87 ± 0.63	0.00 ± 0.19	0.01 ± 0.62	0.01 ± 0.76				
32	$41.99_{-0.11}^{+0.12}$	5.64 ± 2.12	4.13 ± 1.57	3.65 ± 1.38	0.21 ± 0.32	0.69 ± 1.09	0.84 ± 1.32				
33	$42.38^{+0.99}_{-0.25}$	14.25 ± 4.81	8.58 ± 2.98	7.26 ± 2.52	0.80 ± 0.30	2.64 ± 1.17	3.22 ± 1.36				
$0.75 \le z \le 1.125$											
23	$41.47^{+0.18}_{-0.39}$	5.85 ± 2.76	4.75 ± 2.24	4.75 ± 2.24	0.43 ± 0.40	1.44 ± 1.39	1.75 ± 1.67				
22	$41.78^{+0.09}_{-0.11}$	5.22 ± 1.36	4.07 ± 1.08	4.07 ± 1.08	0.30 ± 0.23	1.00 ± 0.79	1.22 ± 0.95				
13	$41.97_{-0.10}^{+0.13}$	9.83 ± 6.21	6.35 ± 4.04	5.42 ± 3.45	0.55 ± 0.54	1.82 ± 1.86	2.21 ± 2.24				
16	$42.35^{+1.03}_{-0.22}$	25.24 ± 11.18	11.32 ± 5.17	9.43 ± 4.31	1.02 ± 0.39	3.39 ± 1.53	4.12 ± 1.78				
$1.125 < z \le 1.5$											
9	$41.54_{-0.14}^{+0.12}$	1.97 ± 0.67	1.89 ± 0.64	1.89 ± 0.64	-0.35 ± 0.29	-1.17 ± 1.00	-1.42 ± 1.21				
10	$41.83_{-0.05}^{+0.04}$	2.25 ± 0.80	1.93 ± 0.69	1.78 ± 0.63	-0.40 ± 0.30	-1.34 ± 1.06	-1.64 ± 1.27				
19	$42.00^{+0.11}_{-0.12}$	3.92 ± 1.47	2.99 ± 1.13	2.71 ± 1.03	-0.05 ± 0.32	-0.15 ± 1.08	-0.18 ± 1.31				
17	$42.42_{-0.25}^{+0.53}$	7.03 ± 1.52	5.03 ± 1.13	4.34 ± 0.98	0.36 ± 0.19	1.18 ± 0.70	1.44 ± 0.83				

Table 2

Note. — All observables are given for nebular gas properties.

^a N is the number of stacked galaxies in the bin.

^b No correction applied. ^c Corrected only for H α and H β absorption lines (see §2.5).

^d Corrected for H α and H β absorption lines and [N II] contamination (see §2.5).

^e Calculated from the absorption line and [N II] corrected Balmer decrements.