
Lecture Two: Working with high  
dimensional data 

“In ancient times they had no statistics so they 
had to fall back on lies.”       Stephen Leacock  



Recommended books 

“The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction”, Hastie 
et al 

“Pattern Recognition and Machine 
Learning”, Bishop 

“Data Analysis: A Bayesian Tutorial”, Sivia Python based machine learning 
tool kit.  



Exposure 1 

Exposure 2 

Exposure 1 
- 

Exposure 2 

What is the science we want to do? 
•  Finding the unusual  

–  Nova, supernova, GRBs  
–  Source characterization  
–  Instantaneous discovery  

•  Finding moving sources 
–  Asteroids and comets 
–  Proper motions of stars 

•  Mapping the Milky Way 
–  Tidal streams 
–  Galactic structure 

•  Dark energy and dark matter 
–  Gravitational lensing 
–  Slight distortion in shape 
–  Trace the nature of dark energy 



Exposure 1 

Exposure 2 

Exposure 1 
- 

Exposure 2 

What are the operations we want to do? 
•  Finding the unusual  

–  Anomaly detection 
–  Dimensionality reduction 
–  Cross-matching data 

•  Finding moving sources 
–  Tracking algorithms 
–  Kalman filters 

•  Mapping the Milky Way 
–  Density estimation 
–  Clustering (n-tuples) 

•  Dark energy and dark matter 
–  Computer vision 
–  Weak Classifiers 
–  High-D Model fitting 



1.  Complex models of the universe 
     What is the density distribution and how does it evolve 

 What processes describe star formation and evolution 

2.  Complex data streams 
 Observations provide a noisy representation of the sky 

3.  Complex scaling of the science 
     Scaling science to the petabyte era 

 Learning how to do science without needing a CS major 

Science is driven by precision we need to tackle 
issues of complexity: 



There are no black boxes 



How complex is our view of the universe? 

We can measure many 
attributes about sources 
we detect… 

… which ones are 
important and why (what is 
the dimensionality  of the 
data and the physics) 

Connolly et al 1995 



What the Hell do you do with all of that Data? Low dimensionality remains even with more 
complex data 
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4000-dimensional (λ’s) 

10 components Ξ >99% of variance 
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f λ( ) = aieii<N
∑ λ( )



Principal Components 



PCA in a Nutshell 

•  We can define a covariance matrix for the data 
(centered) 

•  We want a new set of axes where the covariance 
matrix is diagonal 

•  What is the appropriate transform? 

Simply the definition of an  
eigensystem 



PCA in a Nutshell 

•  Singular Valued Decomposition decomposes a 
matrix as 

•  Decomposing the correlation matrix 

•  We see that V=R and so SVD results in the 
eigenvectors of the system 



Quick note on speed 

Is equivalent to  

Use the covariance or correlation matrix depending on the rank of the system 



PCA with Python 

from sklearn.decomposition import RandomizedPCA 

n_components = 5 
# Compute PCA components 

spec_mean = spectra.mean(0) 

# use randomized PCA for speed 
pca = RandomizedPCA(n_components - 1) 
pca.fit(spectra) 
pca_comp = np.vstack([spec_mean, 
                      pca.components_]) 



What the Hell do you do with all of that Data? Low dimensionality remains even with more 
complex data 
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Dimensionality relates to physics 

Yip  et al 2004 

400-fold compression 
Signal-to-noise weighted 
Accounts for gaps and noise 
Compression contains physics 
Not good at non-linear features 

Elliptical 

Spiral 



Independent Component Analysis 

The cocktail party problem 

We want to extract the independent components (to find the  
mixing matrix W) 



Statistical independence 

For PCA p=q=1 

Search for non-Gaussian signal with the rationale being that 
the sum of two independent random variables will be more  
Gaussian that either individual  component.  

Non-Gaussianity defined by Kurtosis and negentropy,  



ICA in Python 

from sklearn.decomposition import FastICA 

n_components = 5 

# ICA treats sequential observations as related.  
# Because of this, we need to fit with the transpose of the spectra 
ica = FastICA(n_components - 1) 
ica.fit(spectra.T) 
ica_comp = np.vstack([spec_mean, ica.transform(spectra.T).T]) 





Responding to non-linear processes 

Local Linear Embedding (Roweis and Saul, 2000) 

Preserves local structure 
Slow and not always robust to outliers 

PCA LLE 





LLE with Python 

from sklearn import manifold, neighbors 
n_neighbors = 10 
out_dim = 3 

LLE = manifold.LocallyLinearEmbedding(n_neighbors, out_dim, 
                                          method='modified', 
                                          eigen_solver='dense’) 
Y_LLE = LLE.fit_transform(spec_train) 

flag = flag_outliers(Y_LLE, nsig=0.25) 
coeffs = Y_LLE[~flag] 



A compact representation accounting for 
broad lines  

VanderPlas and Connolly 2009 

Elliptical 

Spiral 

Seyfert 1.9 

Broad line QSO 

No preprocessing  

Continuous 
Classification 

Maps to a physical 
space 



PCA vs LLE 

PCA LLE 



Using structure to detect outliers 

Type Ia supernovae 
0.01% contamination 
to SDSS spectra 

Type Ia supernovae 
Visible for long 
(-15 to 40 days) 
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SN λ( ) = f (λ) − aiegii<N
∑ λ( ) − qieq ii<N
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Well defined spectral 
signatures 

Magwick et al 2003 



Bayesian Classification of outliers 

Density estimation using a mixture of Gaussians  
gives P(x|C): likelihood vs signal-to-noise of anomaly 



Probabilistic identification with no visual 
inspection  

Krughoff et al 2011 Nugent et al 1994 



A serendipitous way to measure supernovae rates 

350K SDSS spectra, 52 SN Ia,  z ~ 0.1011  
0.470 ± 0.08 Snu  (1 SNu = 1010 L๏ per century)  
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How to find anomalies when we don’t 
have a model for them 

HII and PoG 

CVs and DN 



Anomaly discovery from a progressive 
refinement of the subspace 

Outliers impact the local subspace determination (dependent  
on number on nearest neighbors). Progressive pruning 
identifies new components (e.g. Carbon stars). 

Need to decouple anomalies from overall subspace 



Quantifying the outliers and subspaces 
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Decompose into principal subspace and  
noise subspace (SVD) 

€ 

xi = u js jvij +
j=1

k

∑ u js jvij
j=k+1

d

∑

Accumulate the errors given a truncation  
(or over all truncations) 

Extend to non negative matrix factorization  
(a more physical basis) 

€ 

U,V = argmin
U ,V

|| X −UTV ||2,U ≥ 0,V ≥ 0



Robust low rank detectors 

Decompose into Gaussian noise and outliers 
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X =UTV + E +O
Mixed matrix factorization (iteratively decompose  
matrix then solve for outliers). Using the L1 norm  
as the error measure 
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min
U ,V ,O

1
2
|| X −UTV −O ||2 +λ ||O ||r

How to choose λ is an open question (set to  
produce % of outliers) 



Anomalies within the SDSS spectral data 

Xiong et al 2011 

PN G049.3+88.1 
Ranked first 
Expect 1-3 PNE 
Found 2 

CV-AM 
2 orbiting WDs 
Ranked top 10 

WD with debris disk 
Ranked top 30 
Only 3 known in SDSS 



Expert user tagging (http://autonlab.org/sdss) 

Xiong et al 2011 


