
 Tools for Archives:���
Image Processing	

Richard L. White���
Space Telescope Science Institute	

	

HiPACC Summer School, July 2012	

Overview	

•  Image processing	

– Fourier transforms	

– Wavelet transforms & multi-scale processing	

– Compression	

– Deconvolution	

– Etc. …	

7/2012	
 2	

Fourier Transforms	

•  Key fact: Fourier transforms make

convolutions fast���
	
F(X * Y) = F(X) × F(Y)���

Fast FT (FFT) converts O(N2) operation to
O(N log N)	

•  FTs occur naturally in radio interferometry
(which measures FT of image)	

– Look to radio astronomy for clever adaptations,

e.g., FFT for unevenly spaced data	

7/2012	
 3	

Fourier Transforms	

•  FTs are complex-valued with amplitude and

phase	

– Perhaps surprising: phase is more important

than amplitude in capturing image information	

7/2012	
 4	

Phase versus amplitude?	

Phase	

Phase	

Fourier Transforms	

•  FTs are complex-valued with amplitude and

phase	

– Perhaps surprising: phase is more important

than amplitude in capturing image information	

•  FT coefficients are global	

– Changing a single coefficient changes every
pixel in the image 	

7/2012	
 6	

Local changes, global effects	

Changed single FT coefficient	

Local changes, global effects	

Changed block (0.1%) of coefficients	

Fourier Transforms	

•  FTs are complex-valued with amplitude and

phase	

– Perhaps surprising: phase is more important

than amplitude in capturing image information	

•  FT coefficients are global	

– Changing a single coefficient changes every
pixel in the image 	

– Essential for convolution theorem, but
awkward when using FTs for analysis	

7/2012	
 9	

Wavelet Transforms	

•  Wavelet transforms decompose an image

into a sum of localized functions with
various spatial scales	

– Fast and easy to compute	

•  Because the functions are localized, changes
in coefficients produce localized changes in
the corresponding image	

– Very useful for image analysis	

7/2012	
 10	

Haar transform	

•  The Haar transform (Haar 1916) is the simplest

wavelet transform	

•  The algorithm: Given pixels a0, a1, a2, a3, … aN-1:	

1.  Compute sums & differences using pixel pairs:	

s0 = (a1+a0)/2 d0 = (a1-a0)/2	

s1 = (a3+a2)/2 d1 = (a3-a2)/2	

…	

2.  Repeat the paired sums/diffs using s0, s1, s2, … sN/2-1	

3.  Continue reductions until only one s value remains	

7/2012	
 11	

a0	
 a1	
 a2	
 a3	
 a4	
 a5	
 a6	

Haar transform	

•  Haar is the simplest (lowest order) example

of the class of orthonormal transforms	

– Transformed array is same size as original ���

(# coefficients = # input pixels)	

– Not translation invariant	

– Can be made exactly reversible for integer

computations using the lifting scheme	

•  Extension to 2-D is easy	

– Do one reduction step in X, then one in Y	

– That makes a half-size image; iterate on that	

7/2012	
 12	

Wavelet example: ���
Haar transform	

Wavelet example: ���
Haar transform	

Y difference

X difference

XY diff

Step 1	

Wavelet example: ���
Haar transform	

Step 2	

Wavelet example: ���
Haar transform	

Final	

à trous transform	

•  The à trous (‘with holes’) transform

(Bijaoui, Starck & Murtagh 1994) is an
“undecimated” wavelet transform	

– Translation invariant (unlike orthonormal

transforms)	

– Produces a stack of images the size of the

original image	

– Simple and fast to compute	

7/2012	
 17	

à trous algorithm	

1.  Start with data array and (small) kernel	

– Data	

– Kernel	

2.  Convolve kernel with data, ���
s(1) = k * a	

– Smoothed	

3.  Subtract smoothed from original, ���
d(1) = a-s(1) 	

–  1st Difference	

7/2012	
 18	

a0	
 a1	
 a2	
 a3	
 a4	
 a5	
 a6	

k0	
 k1	
 k2	
 =	
 ¼	
 ½	
 ¼	

s0	
 s1	
 s2	
 s3	
 s4	
 s5	
 s6	

d0	
 d1	
 d2	
 d3	
 d4	
 d5	
 d6	

à trous algorithm	

4.  Expand kernel by adding holes (zeroes):	

–  1st Kernel	

–  2nd Kernel	

5.  Convolve new kernel with data, ���
s(2) = k * s(1)	

– Smoothed	

6.  Subtract smoothed from original, ���
d(2) = s(1)-s(2)	

–  2st Difference	

7/2012	
 19	

k0	
 0	
 k1	
 0	
 k2	

k0	
 k1	
 k2	

s0	
 s1	
 s2	
 s3	
 s4	
 s5	
 s6	

d0	
 d1	
 d2	
 d3	
 d4	
 d5	
 d6	

à trous algorithm	

•  Repeat for N levels	

– N is arbitrary, typically ~4	

– Kernel doubles in size at each level	

•  Result is the stack of difference images plus
the final smoothed image	

–  Inverse is very simple: sum all the images	

•  Extension to 2-D is obvious: smooth in x, y	

•  Direct convolution is fast: number of non-

zero coefficients is small, separable kernel	

7/2012	
 20	

Wavelet example: ���
à trous transform	

4 levels	

Multi-scale Data Processing	

•  Translation-invariant wavelet transforms are

well-suited for image processing	

•  The conceptual simplicity of the à trous

transform (smooth, subtract, repeat) makes
it easily modified for custom applications	

– Example: multi-scale source detection 	

7/2012	
 22	

7/2012	
 23	

Galaxy cluster
Abell 1689���
HST/ACS	

7/2012	
 24	

Galaxy cluster
Abell 1689���
HST/ACS ���

���
SExtractor���

segmentation���
map	

7/2012	
 25	

Galaxy cluster
Abell 1689���
HST/ACS ���

���
Multi-scale

segmentation
using à trous

transform	

Multi-scale source detection	

•  Uses modified à trous transform that iterates

to remove sources detected in difference
image from the smoothed image	

•  Simple thresholding to define source islands
from each difference image	

•  Islands at larger scales can create new
sources or extend existing islands	

– Multiple overlaps: simple rule based on sizes

and shapes of existing islands	

7/2012	
 26	

Image Compression	

•  Orthonormal wavelet transforms keep

minimal information needed to describe
image	

–  Ideal for image compression (lossless or lossy)	

– Approximating an image using wavelet

coefficients is far more accurate than other
schemes 	

7/2012	
 27	

NGC 4911: Hubble Legacy Archive���
ACS/WFC F606W 1024x1024 (51”x51”)	

H-compress (Haar transform) 1.50 bits/pixel	

H-compress 0.899 bits/pixel	

H-compress 0.515 bits/pixel	

NGC 4911: Hubble Legacy Archive���
ACS/WFC F606W 1024x1024 (51”x51”)	

NGC 4911: Hubble Legacy Archive���
ACS/WFC F606W 256x256 (12.8”x12.8”)	

H-compress 1.50 bits/pixel	

H-compress 0.899 bits/pixel	

H-compress 0.515 bits/pixel	

Don’t try this without the wavelet transform!���
Results of row-by-row difference compression	

Don’t try this without the wavelet transform!���
Results of row-by-row difference compression	

Simple quantization, subtractive dither,���
H-compress	

1.65 bits/pixel	

1.50 bits/pixel	

Image Compression	

•  Image and data compression have obvious

applications	

– Reduce storage	

– Reduce transmission bandwidth (esp. for space

missions)	

•  There are less obvious applications too	

– Speed I/O bound processes (it can be faster to
read and uncompress)	

– Reduce memory bandwidth (e.g., for GPUs)	

7/2012	
 40	

Deconvolution & Denoising	

•  A classic use of wavelets is denoising

images: filter out noise while leaving
significant structures	

– This is what happens in image compression too:

noise is incompressible, so discard it	

•  Denoising is a helpful addition in

deconvolution algorithms too	

7/2012	
 41	

Deconvolution in a Nutshell	

•  Images are blurred by a point-spread

function	

– Spatially invariant PSF -> blurring is

convolution with PSF (but PSF may vary too)	

•  Many algorithms exist that attempt to

deconvolve data & recover unblurred image	

– E.g., Richardson-Lucy iteration for data with

Poisson noise	

7/2012	
 42	

Iterative Deconvolution
Algorithm	

1.  Start with initial guess for image (e.g., flat)	

2.  Convolve model image with PSF to create

simulated data	

3.  Compute difference between simulated data and

observed data	

4.  Use differences to adjust model image	

–  This step is specific to the algorithm being used	

5.  Repeat steps 2–4 until desired convergence	

7/2012	
 43	

Iterative Deconvolution
Algorithm with Denoising	

1.  Start with initial guess for image (e.g., flat)	

2.  Convolve model image with PSF to create

simulated data	

3.  Compute difference between simulated data and

observed data	

3.5 Denoise differences with wavelet filter (Starck &

	
Murtagh 1994)	

4.  Use differences to adjust model image	

–  This step is specific to the algorithm being used	

5.  Repeat steps 2–4 until desired convergence	

7/2012	
 44	

Deconvolution Amplifies Noise	

Deconvolution Eta Carina	

Deconvolution Eta Carina	

Deconvolution Eta Carina	

Deconvolution Eta Carina	

Summary: Image Processing	

•  Use Fourier transforms for convolutions	

– Very fast when they are the right tool	

– Also key for period finding, interferometry	

•  Use wavelet transforms for almost
everything else …	

– Denoising, compression, multi-scale

processing, …	

7/2012	
 50	

