

RLW paper titles: http://www.wordle.net

Astronomical Surveys and Data Archives

Richard L. White Space Telescope Science Institute HiPACC Summer School, July 2012

Overview

- Surveys & catalogs: Fundamental tools for astronomy
- Mission data archives: Heterogeneous but powerful resources

The Value of Surveys

Astronomy is an observational, rather than an experimental, science. Astronomers carry out the equivalent of experiments by discovering and studying astrophysical systems with a variety of ages and initial conditions. Surveys generate the list of available laboratories for such studies and are central to progress in the discipline.

Complete, unbiased surveys are the best technique we have both for discovering new and unexpected phenomena, and for deriving the intrinsic properties of source classes so that their underlying physics can be deduced.

Surveys & Catalogs

- Exponential growth in computing power has enabled vast increases in:
 - Electronic detector sizes
 - CPU computational power
 - Memory for data processing
 - Storage for archives
- Observational astronomy is transitioning to an enterprise dominated by surveys

Disk Cost per Gigabyte

Disk Cost per Gigabyte

Disk Cost per Gigabyte

Catalogs

- Creating a catalog is an integral part of the survey
 - Survey reduction is iterative: info from initial catalog feeds back into improved calibration
 - E.g., Pan-STARRS ubercal
 - Early science with catalog is key to improving survey quality
 - Searching for SDSS objects without 2MASS counterparts is a great way to find flaws in both catalogs

Pan-STARRS Ubercal

Schlafly, Finkbeiner, et al.

7/2012

Tools for Catalog Access

- Essential catalog functions:
 - Search on position or other parameters
 - Cross-match with other catalogs
- Primary access tools:
 - Virtual Observatory (VO) services
 - Cone search (position), ObsTAP (more flexible, but not widely supported)
 - Direct database access: CasJobs (SQL)
 - Far more powerful, allows large queries & results
 - Custom tools & services
 - Just download the catalog (not practical for largest)

Selected Catalogs

Catalog	Wavelength	Sky Area	Comments
2MASS	Near-IR 1.1–2.3 μm	All sky	Bright, mainly stars
GSC2/USNO-B	Optical	All sky	From photographic plates!
WISE	Mid-IR 3–22 μm	All sky	
ROSAT	X-ray	All sky	
Hipparcos/Tycho	Optical	All sky	Astrometric
GALEX	Ultraviolet	$30,000 \text{ deg}^2$	
NVSS	Radio 20 cm	30,000 deg ²	Very low resolution 45"
Pan-STARRS	Optical 0.4–1.1 µm	$30,000 \text{ deg}^2$	Incomplete, not public yet
SDSS	Optical 0.35–1.1 μm	10,000 deg ²	Images & spectra
FIRST	Radio 20 cm	10,000 deg ²	Matches SDSS area
Medium deep	Optical, IR	$\sim 10^3 \text{ deg}^2$	UKIDSS, CFHTLS, Kepler,
Small very deep	Many, X-ray to radio	$< 2 \text{ deg}^2$	Cosmos, UDF, GOODS,

The Sloan Digital Sky Survey

- SDSS set the standard that all current & future surveys should aspire to
 - High quality, highly uniform data products
 - Well documented, early, and frequent public data releases
 - Powerful tools for public data access (including the creation of CasJobs)
 - Enormous science impact
- SDSS is the model for future projects such as LSST

Surveys vs. Mission Archives

- Surveys are homogeneous by design
 - Driven by a single observing plan
 - One instrument
 - Few filters or instrument modes
 - Consistent exposure times
 - Uniform sky coverage
- Mission/observatory archives are heterogeneous
 - Driven by a great variety of science proposals
 - Many instruments, filters, and modes
 - Highly variable exposures and observing plans
 - Very uneven sky coverage

HST Observations of M101

Instruments	#Footprints
⊟ALL	1391
□ ACS	205
	0
□ WFPC2	357
■WFPC2-PC	349
	122
■ NICGrism	0
■WFC3	49
	0
■ STIS	249
⊨ FOS	60
GHRS	0

HST Observations of M101

Instruments	#Footprints
⊴ ALL	1391
✓ ACS	205
☑ ACSGrism	0
✓ WFPC2	357
WFPC2-PC	349
✓ NICMOS	122
✓ NICGrism	0
✓ WFC3	49
✓ COS	0
STIS	249
⊌FOS	60
GHRS	0

HST Observations of 47 Tuc

Instruments	#Footprints
⊟ALL	3965
■ ACS	1768
	0
□ WFPC2	754
■WFPC2-PC	0
	139
■ NICGrism	0
■WFC3	361
	5
■ STIS	882
⊨ FOS	49
GHRS	7

HST Observations of 47 Tuc

Instruments	#Footprints
⊴ ALL	3965
✓ ACS	1768
☑ ACSGrism	0
✓ WFPC2	754
■WFPC2-PC	0
✓ NICMOS	139
✓ NICGrism	0
✓ WFC3	361
✓ COS	5
✓ STIS	882
⊮FOS	49
GHRS	7

-

HST Observations of M31 (Andromeda)

Instruments	#Footprints
ALL	2135
□ <mark>ACS</mark>	749
	0
□ WFPC2	0
■WFPC2-PC	0
■ NICMOS	0
■ NICGrism	0
BWFC3	1386
	0
	0
⊨ FOS	0
GHRS	0

HST Observations of M31 (Andromeda)

Instruments	#Footprints
⊴ ALL	2135
<mark>⊿CS</mark>	749
	0
□ WFPC2	0
■WFPC2-PC	0
	0
■ NICGrism	0
✓WFC3	1386
	0
	0
⊨FOS	0
GHRS	0

STScI Archive & Data Center

- STScI hosts archives and data processing for multiple missions igodol
 - The big active missions: HST, Kepler, GALEX
- HST archive has been in operation since Hubble launch in 1990 ullet
 - All HST data are retrieved through the archive
 - Hubble Legacy Archive with enhanced data products open since 2008

ACS image & catalogs

MAST: Mikulski Archive for Space Telescopes

- Formerly the Multi-mission Archive at Space Telescope
 - Established in 1997 as NASA's Optical/UV archive
 - Supports both active (HST/HLA, GALEX, Kepler, XMM-OM) and legacy missions (IUE, FUSE, EUVE, ...)
 - The other NASA archive centers:
 - HEASARC (GSFC): X-ray, gamma ray
 - IRSA/IPAC/NED/... (Caltech/JPL): Infrared
 - ADS (CfA): Astronomical literature

The Multi-Mission Archive at STScl 2011 Senior Review Proposal NASA's Optical/UV Astrophysics Data Archive

What is the STScl archive?

- Data
 - ~185 TB of images, spectra, catalogs, time series
- Metadata

~10⁶ HST observations (plus other missions) Documentation, publication links, ...

User interfaces
Search, browse, plot, explore
Browser-based interfaces
Help desk/User support

VUIABLE>

PARAM datatype="char" name="INPUT:POS" value="210.802458,54 PARAM datatype="double" name="INPUT:SIZE" value="0.240000" PARAM datatype="char" name="INPUT:FORMAT" value="FITS" arrag PARAM datatype="char" name="INPUT:imagetype" value="best" a PARAM datatype="char" name="INPUT:inst" value="acs,wfpc2,ni PARAM datatype="int" name="INPUT:inst" value="0"></PARAM datatype="char" name="INPUT:inst" value="0"></PARAM PARAM datatype="char" name="INPUT:inst" value="1.000000"> PARAM datatype="char" name="INPUT:inst" value="1.000000"> PARAM datatype="char" arraysize="*" name="refframe" ucd="V0. PARAM datatype="char" arraysize="*" name="refframe" ucd="V0. PARAM datatype="char" arraysize="*" name="projection" ucd=""

Services

VO services, data retrieval, image cutouts, ... (UIs are built around VO services)

		m51 Examples: M Requires Fire	bble 1101, 14 03 1 efox, Safari, IE	2.6 +54 2 7, or com	9gac 0 56.7 r=0.2d patible browse	sy Ar	Chiv	e vanced search
Inventory	Images = 202.482	Footprints 194 Dec =	∰Cart, 0 47.23150	kв 9 г = 0	Grism Spe	ctra (ST-ECF) Help .727 +47:1	3:53.43]
Results 1-2	0 of 224	Show 2	o 🗧 result	s per pag	ge .	Previous 1	2345678	9 12 Next
Click column h Show selected Text boxes un	heading to sort d rows: First ader columns s	t list - Click rows Mixed Only N elect matching r	to select Ad lot Reset sele ows Apply Fil	d selection ection Iter Clear	Filter	Detector	Aperture	Spectral Elt
Display	Retrieve	RA	DEC	Level	Target	Detector	Aperture	Spectral_Ent
Display	₩ FITS	13:30:07.45	47:16:11.3	5	M51-POS6	ACS/WFC	WFCENTER	F435W
Disalar	-/FITC	12.20.07 45	47.10.11.2	-	HE1 0000	ACC ANEC	HICCONTER	FFFF

47-16-11	3	٨	M51_POS6	ACS/MEC	WECENTED	F814W/F555W/	
	-	56 869	1. dec=24.105	radius=30.00 arr	S.	•	1.6.1
	10		8	00	1 .		
			0 5	3.			
	0			}			
			12 .				
			V			. M	
	- · ·				T		
	- E						W
				2			3.
			1		3		
					°		
	1.1.1		. Ø				
	+						
				(B)	-		
775W/F	625W	(cold	or) CL0152-	1357-POS1)		1 · · · · · ·	

M51-POS6 ACS/WEC WECENTER

WFCENTER

M51-POS6 ACS/WFC

E658N

F814W

VEITS 13:30:07.45 47:16:11.3 5

324

Instruments #Footprints

13:30:07.45 47:16:11.3

FITS

ALL

ACSCri

NICGris

FOS

2web image viewer (MOS_597 ACS/WF

Display

The MAST Archive: 2 minute summary

- ~ 185 TBytes (62 TB HST, 79 TB HLA)
- Ingest rate: > 25 TB/yr
- Retrievals: > 100 TB/yr
 - Distributed volume ~4x ingest

Past & projected volume

HST Archival Data Demand is Increasing

- HST archive retrievals doubled after Servicing Mission 4
- >10,000 registered archive users (85 countries)

HST Publication Statistics

Key Archive Technologies

- Databases
 - Current: MS SQL Server
 - Past: Sybase, Objectivity, ...
- Data Storage
 - Current: Magnetic disks + UDO backup
 - Past: Optical & magneto-optical, jukeboxes
- Data delivery
 - Current: Almost 100% Internet

NGC 2841 WFC3

- Past: 9-track tape, Exabyte tape, CD-ROM, DVD
- User interfaces & services
 - Current: Browser/HTTP-based: Javascript, PHP, Flash, ...
 - Past: Custom C/C++/Java applications, paper forms!

1990

- There is no Internet data on tapes in the mail
- Disks cost \$10 million per terabyte
- Archive computers are DEC VAX/VMS

2012

- Nearly all data are delivered via Internet
- Disks cost \$100 per terabyte
- Archive computers are many-core Linux systems

Data Product Generation

The archive is not a collection of static data.

- Data processing is continuously improving
- New "science-ready" data products are being created:
 - GALEX raw data are being reprocessed to generate 50 TB photon database
 - Hubble Legacy Archive is creating enhanced images and source catalogs from HST data

Mrk 817 WFC3

• http://hla.stsci.edu

Summary

- Surveys are the equivalent of experiments for the observational science of astronomy
 - Catalogs are essential both as data products and for (self-) calibration
 - SDSS is the model for future surveys: rapid public access to high quality products with great tools
- Observatory archives are highly heterogeneous compared with surveys
 - Very heavily used & highly productive
 - Archival science will dominate ultimate Hubble science
 - Technologies: databases, storage, interfaces