

ASTRONOMY

FINDING OUT YOU REALLY JUST DON'T MATTER

Stars form from dense clouds of gas

Messier 33 galaxy, a nearby member of the Local Group

17 times Pluto's orbit

Orion "proplyd"

LESSONS FROM COSMOLOGY

• We got here according to the laws of physics.

We are subject to those laws and must live within them.

LESSON #2

• Our Solar System is *rare* in having planets that are well separated and on circular orbits.

It is exceptionally stable with a future lifetime of >1 billion years.

• The Sun has <u>a billion years</u> of useful life remaining.

We have the precious gift of cosmic time.

We are the <u>first human beings</u> to know these things.

What is "steady" growth?

Assume 3.5% growth each year....

(1.035) x (1.035) x (1.035) x

Doubling time = *Twenty years!*

Twenty years:	2	= 2
Forty years:	2 x 2	= 4
Eighty years:	2 x 2 x 2 x 2	= 16

The "miracle" of compound interest... on <u>cosmic</u> time

3.5% growth every year for 1 billion years...

WHAT HAPPENS?

That's "10" with 13 million zeros after it.

What is sustainable growth on cosmic time?

Allow x2 growth over 1 billion years....

0.00000003% per year

NO net increase in resource use. Waste reduced to levels that can be <u>completely naturally recycled</u>.

A fly-through toward Orion, through the Galaxy, and into intergalactic space

Courtesy Brent Tully, Institute for Astronomy, University of Hawai