Relativistic Gas Dynamics

\&
 Turbulence

Andrew MacFadyen (New York University)
w/ Paul Duffel, Jonathan Zrake \& Hendrik van Eerten

The Future

-Training for Students!!! -Robust Codes - High-Order Codes - Novel Approaches -Data for Observers

Hyper-accreting black hole or ms magnetar

GRB photons are made far away from engine.

Can't observe engine directly with light. (neutrinos, gravitational waves?)

Electromagnetic process or neutrino annihilation to tap power of central compact object.

GAMMA RAY BURST AFTERGLOWS

Need $\varepsilon_{B} \sim 0.001$ for synchrotron

Spherical Attractor

RAM: $5^{\text {th }}$ order accuracy WENO w/ AMR
 Method
 L1 Error Convergence Rate

F-WENO-RK5 $80 \quad 1.87 \mathrm{e}-3$

160	$1.17 \mathrm{e}-4$	4.0
320	$1.30 \mathrm{e}-5$	3.2
640	$6.82 \mathrm{e}-7$	4.3
1280	$2.54 \mathrm{e}-8$	4.7
2560	$8.01 \mathrm{e}-10$	5.0
5120	$2.40 \mathrm{e}-11$	5.1

U-PPM-RK4	80	$1.10 \mathrm{e}-2$	
	160	$2.56 \mathrm{e}-3$	2.1
	320	$5.74 \mathrm{e}-4$	2.2
	640	$1.34 \mathrm{e}-4$	2.1
	1280	$3.10 \mathrm{e}-5$	2.1
	2560	$7.33 \mathrm{e}-6$	2.1
	5120	$1.82 \mathrm{e}-6$	2.1

AMR jet +wind

AM\&Zhang (2009)

AM\&Zhang (2009)

AG Jet Initial Conditions

- Blandford-McKee
- $\mathrm{E}_{\text {iso }}=1 \mathrm{e} 53 \mathrm{erg}$
- $\mathrm{n}_{\mathrm{o}}=1 \mathrm{~cm}^{-3}$
- $\Gamma=23.1$
- $\Theta_{\text {jet }}=0.2$
- Spherical Coords
- 16 levels of AMR
- $R_{0}=1.59 \mathrm{e} 17 \mathrm{~cm}$
- $R / \Delta R=196608$
- 4e10 zone equiv.

Future of AstroComputing, SDSC
Dec 17, 2010

BlandfordMcKee

Off-Axis Light Curves van Eerten, Zhang \& AM (ApJ, 20I0)

Poster 3.05

http://cosmo.nyu.edu/ afterglowlibrary/

Supported by NASA 09-ATP-0190

SN-GRB

See Poster 3.06

On Axis

On Edge

Estimated Jet Break Time for Off-Axis Observer

$$
t_{j}=3.5(1+z) E_{i s o, 53}^{1 / 3} n_{1}^{-1 / 3}\left(\frac{\theta_{0}+\theta_{o b s}}{0.2}\right)^{8 / 3} \text { days }
$$

A. MacFadyen (NYU)

Lateral Expansion

Shock Tube Test

Shear Flow Resolution

AMR
2 levels

400

5 levels

51200

Tess

Duffel \& MacFadyen (2010)

Jet \& Clumps

Flying Pancakes

Misaligned

Oblique

Colliding Clumps

Shear Patches

Kelvin Helmholtz Clouds

Big Whirls Have Little Whirls

KH:I024³ Rel. MHD

log 10 beta
6.80
6.55
6.30
6.05

Twisting and Folding

Magnetic Energy Saturation

$\varepsilon в=0.005$

$$
T^{\mu \nu}=(P+\rho) u^{\mu} u^{\nu}+P g^{\mu \nu}
$$

