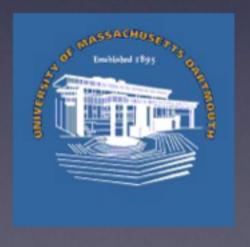
Barriers to Computing at Scale: Hardware, Algorithms, Modeling

Robert Fisher
University of Massachusetts Dartmouth



Future of AstroComputing: December 16, 2010

In collaboration with

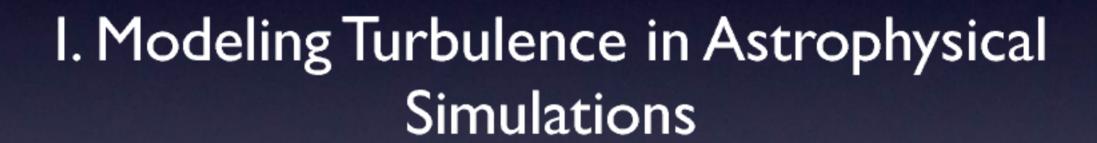
University of	SUNY Stony	Hebrew
Chicago	Brook	University
Donald Lamb Jim Truran Dean Townsley George Jordan Nathan Hearn Carlo Graziani Casey Meakin	Alan Calder	Shimon Asida

With Special Thanks To

University of	Argonne National	Lawrence Berkeley
Chicago	Laboratory	National Laboratory
Anshu Dubey Brad Gallagher Lynn Reid Paul Rich Dan Sheeler Klaus Weide	Ray Bair Susan Coghlan Randy Hudson John Norris Mike Papka Katherine Riley	Katie Antypas

Outline

- I. Modeling Turbulence in Astrophysical Simulations
- II. Hardware, Algorithms, and Asymptotically-Large Simulations



Post-Millenial Computational Astrophysics

- Large-Scale Structure
- Compact Objects, Accretion Disks
- SF at high and low z, high and low mass
- SNe la & II
- Galaxy Formation

 Turbulence at high Reynolds is universal - the inertial scaling laws of a homogeneous, isotropic turbulent velocity field are independent of the driving.

 Turbulence at high Reynolds is universal - the inertial scaling laws of a homogeneous, isotropic turbulent velocity field are independent of the driving.

 Turbulence at high Reynolds is universal - the inertial scaling laws of a homogeneous, isotropic turbulent velocity field are independent of the driving.

 This is one of the deepest lessons of Kolmogorov (1941).

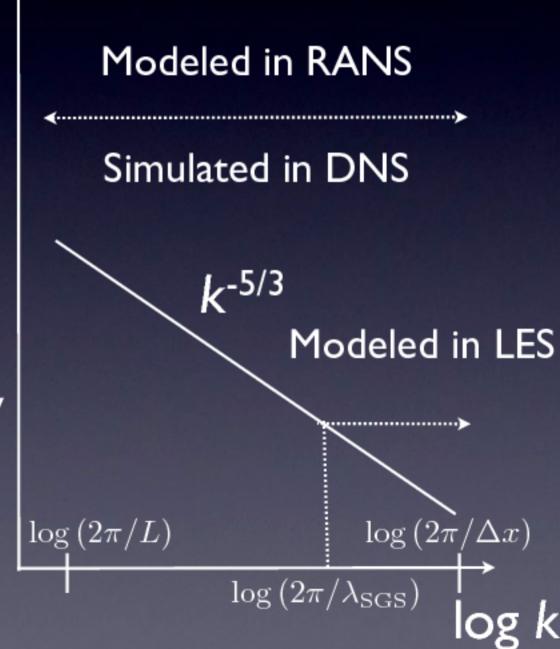
Hierarchy of Fidelity in Turbulence Modeling

log E(k)

- Direct Numerical Simulation (DNS)
 - Resolves Kolmogorov scale

$$\eta \simeq 2 - 4\Delta x$$

- Large Eddy Simulation (LES)
 - Introduces a subgrid model below the filter scale λ_{SGS}
- Reynolds-Averaged Navier Stokes (RANS)

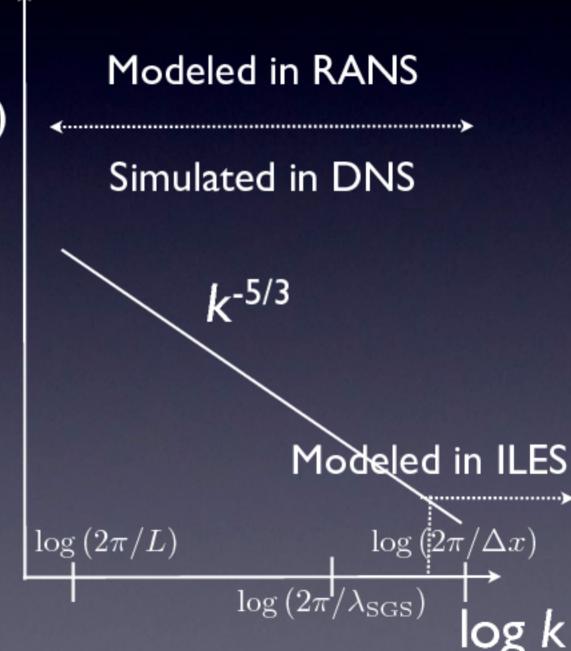


Hierarchy of Fidelity in Turbulence Modeling

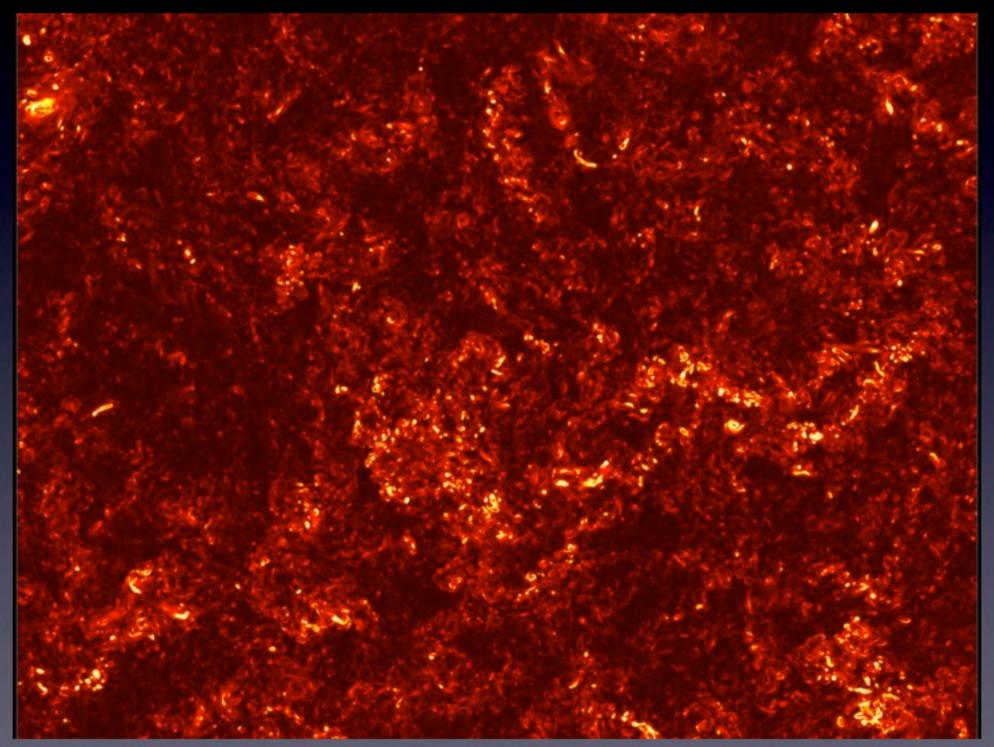
log E(k)

- Implicit Large Eddy Simulation (ILES)
 - Numerical solution to Euler equations
 - Introduces an effective subgrid model and an effective viscosity through numerical dissipation

$$\eta \simeq \Delta x$$



Weakly-Compressible Hydrodynamic Turbulence

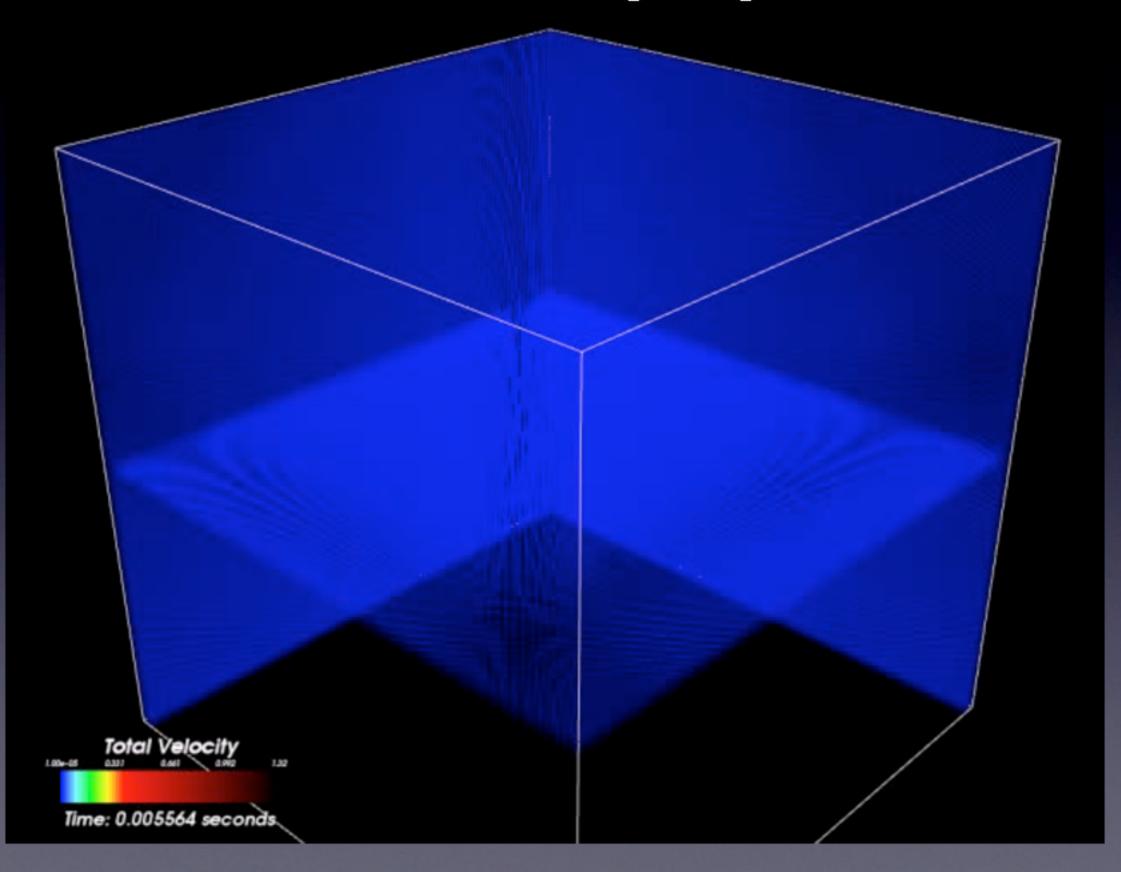


(Fisher et al, 2008, Benzi et al, 2008, Arneodo et al, 2008, Benzi et al, 2010)

BG/L Turbulence Run

- Large-scale homogeneous, isotropic compressible fullydeveloped turbulence :
 - 1856³ base grid size
 - 2563 Lagrangian tracer particles
 - 3D turbulent RMS Mach number = 0.3 (ID = .17) in steady-state
 - Re_λ ~ 600
 - Roughly one week wall clock on 65,536 processors in CO mode

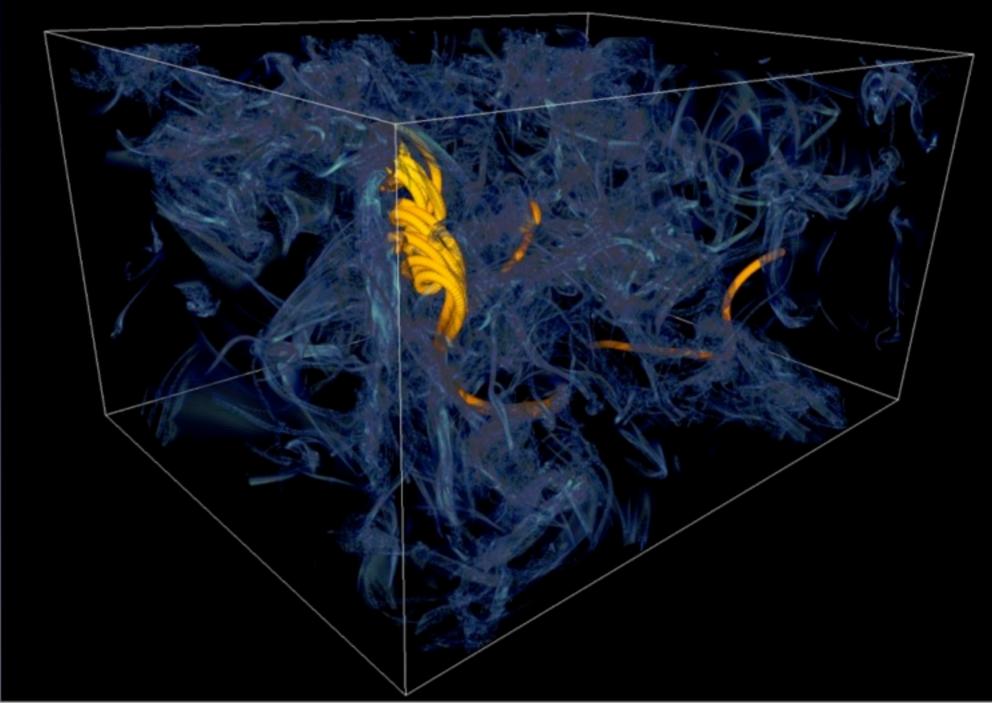
Visualization of Lagrangian Tracers



Arneodo *et al,* 2008)

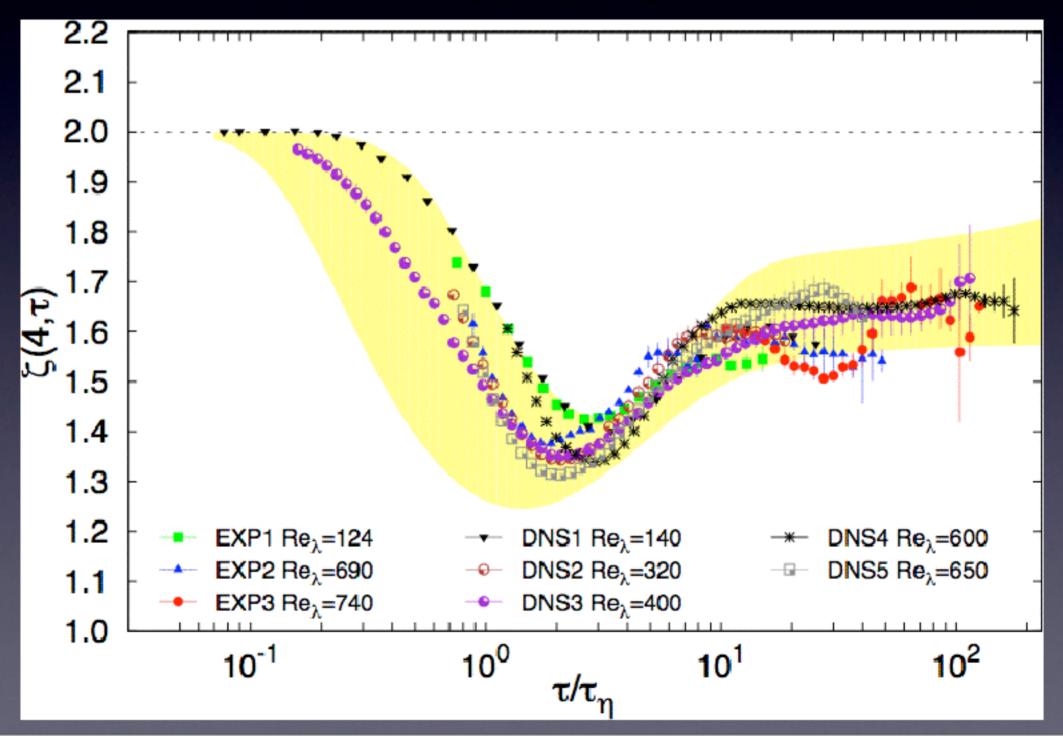
Universality of Lagrangian Structure of Turbulence

$$S_p(\tau) = \langle |v(t+\tau) - v(t)|^p \rangle \propto \tau^{\zeta_p}$$



Universality of Lagrangian Structure of Turbulence

$$S_p(\tau) = \langle |v(t+\tau) - v(t)|^p \rangle \propto \tau^{\zeta_p}$$



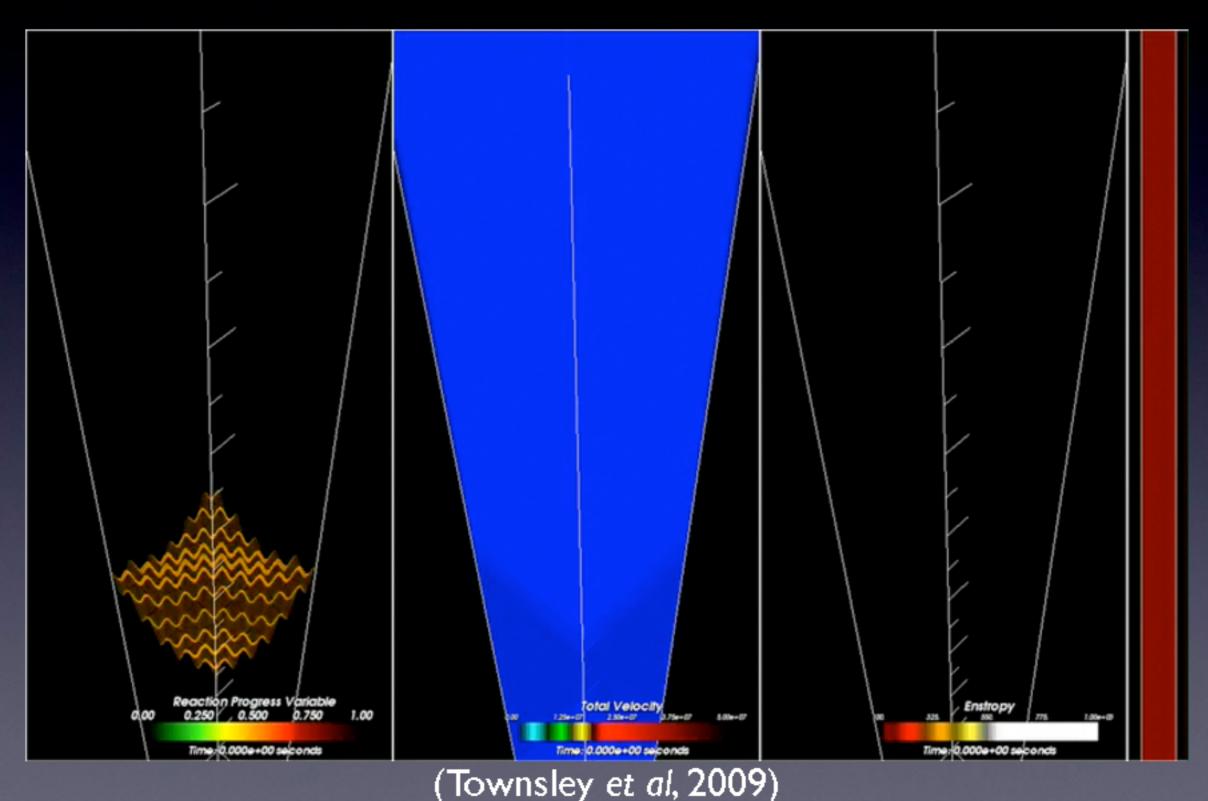
Current turbulent modeling succeeds because the velocity field is universal

- Current turbulent modeling succeeds because the velocity field is universal
- Turbulence modeling may pose significant challenges to future astrophysical studies of coupled multifluid, multiphysics processes:

- Current turbulent modeling succeeds because the velocity field is universal
- Turbulence modeling may pose significant challenges to future astrophysical studies of coupled multifluid, multiphysics processes:
 - Turbulent Combustion (SNe Ia)

- Current turbulent modeling succeeds because the velocity field is universal
- Turbulence modeling may pose significant challenges to future astrophysical studies of coupled multifluid, multiphysics processes:
 - Turbulent Combustion (SNe Ia)
 - Turbulent Mixing (Planet Form., GMCs/SF, SNe II)

- Ongoing work targets the issue of turbulent nuclear combustion
- Simulations resolve the Gibson scale and the flamepolishing scale
- Adaptive-mesh refinement calculations using FLASH3 up to full scale of ANL BG/P Intrepid, ~ 10^5 cores and 10^5 grids

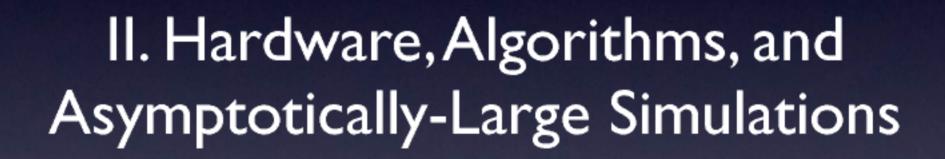


 Calculations demonstrated the feasibility of pursuing local AMR simulations up to the petascale

 Calculations demonstrated the feasibility of pursuing local AMR simulations up to the petascale

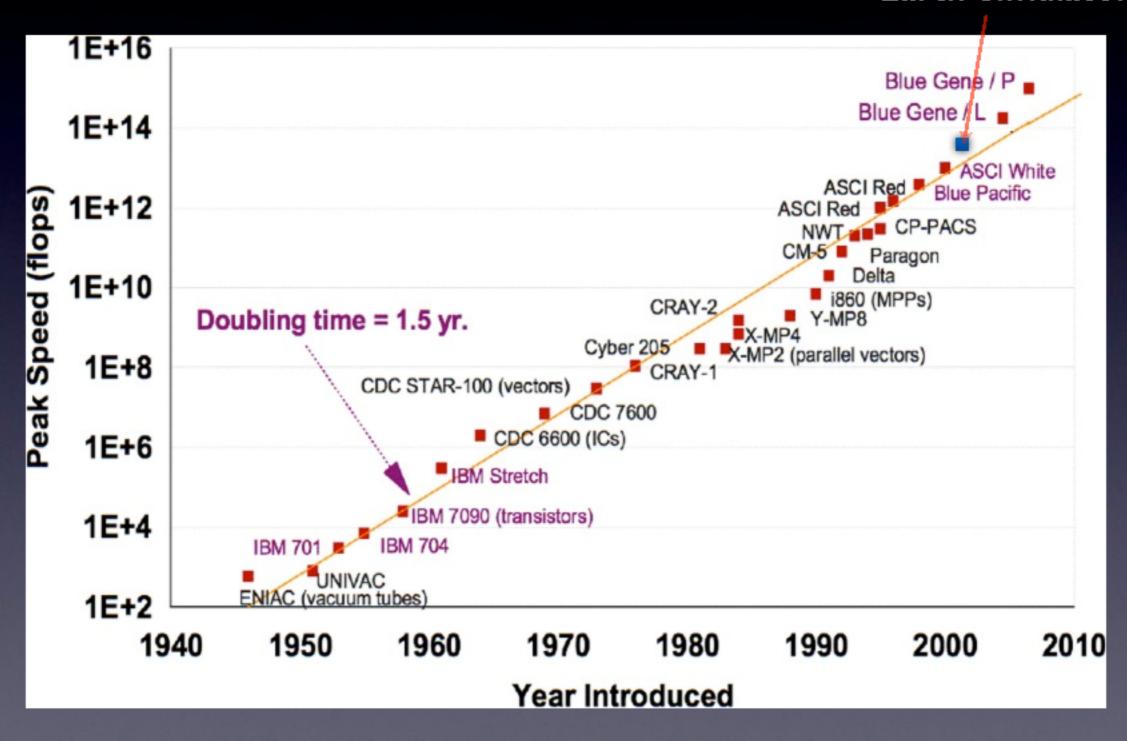
 Calculations demonstrated the feasibility of pursuing local AMR simulations up to the petascale

 Lessons learned from this project can help inform progress to exascale and beyond



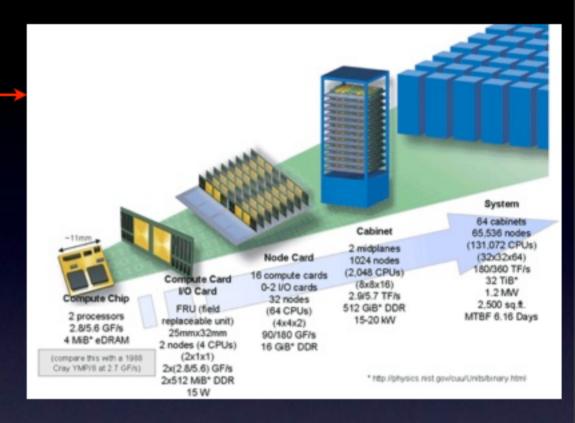
A Brief History of Supercomputing

Earth Simulator



Blue Gene Series

- BG/L, 2004
 - 2 Cores/node
 - 700 MHz/core, 512 MB/core
- BG/P, 2007
 - 4 Cores/Node
 - 850 MHz/core, I GB/core
- BG/Q, 2011
 - 17 Cores/node
 - I.6 GHz/Core, I GB/core



Theory of Ideal, Asymptotically-Large, Explicit Simulations

Theory of Ideal, Asymptotically-Large, Explicit Simulations

• Ideal -

Theory of Ideal, Asymptotically-Large, Explicit Simulations

- Ideal -
 - Perfect load balance

- Ideal -
 - Perfect load balance
 - Perfect scalability

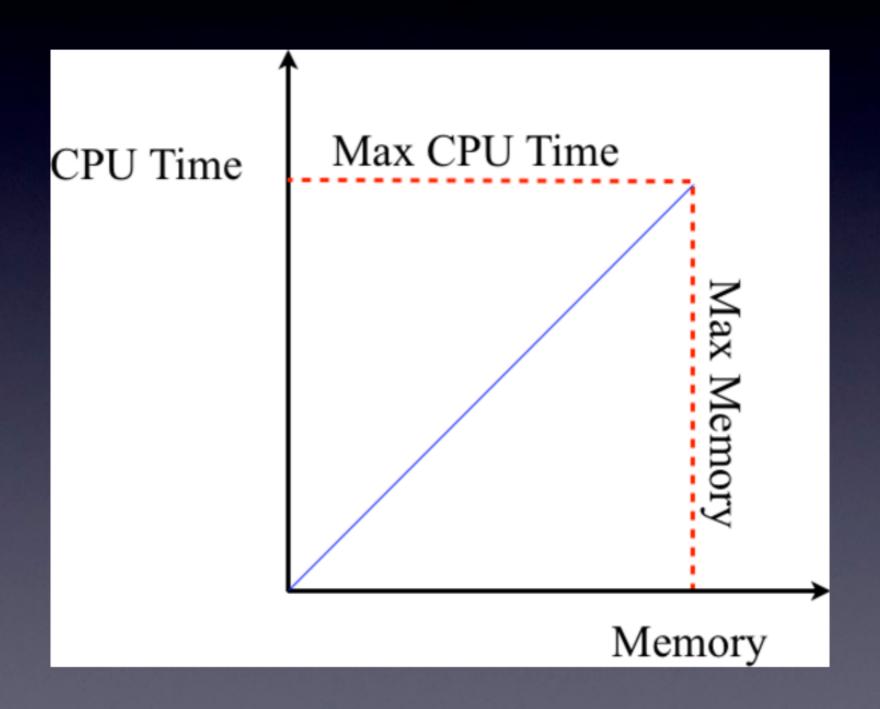
- Ideal -
 - Perfect load balance
 - Perfect scalability
 - Infinite memory bandwidth (no memory wall!)

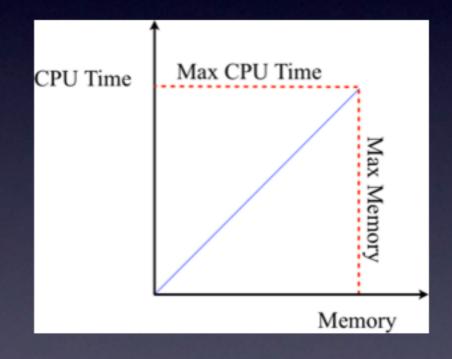
- Ideal -
 - Perfect load balance
 - Perfect scalability
 - Infinite memory bandwidth (no memory wall!)
 - Neglect cost and power considerations

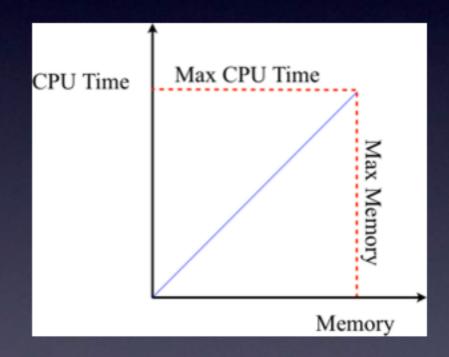
- Ideal -
 - Perfect load balance
 - Perfect scalability
 - Infinite memory bandwidth (no memory wall!)
 - Neglect cost and power considerations
- Explicit -

- Ideal -
 - Perfect load balance
 - Perfect scalability
 - Infinite memory bandwidth (no memory wall!)
 - Neglect cost and power considerations
- Explicit -
 - Timestep limited by CFL Condition

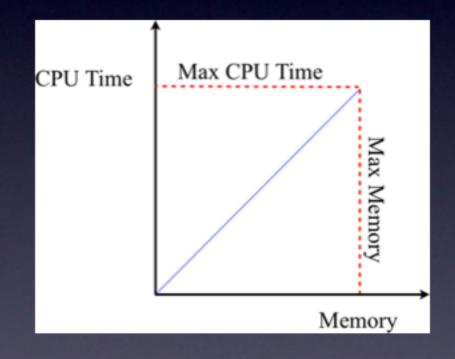
- Ideal -
 - Perfect load balance
 - Perfect scalability
 - Infinite memory bandwidth (no memory wall!)
 - Neglect cost and power considerations
- Explicit -
 - Timestep limited by CFL Condition
- Idealized assumptions allow us to focus on deep limits to scalability and strategies to address these





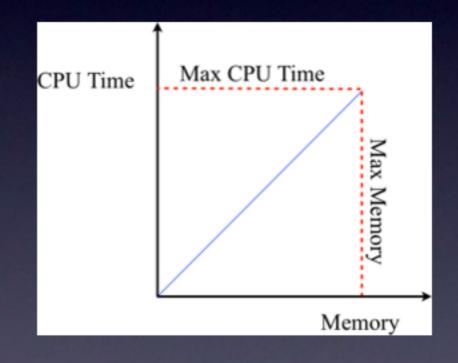


$$CPU Time = \frac{\chi_{CPU} N^4 N_{dyn}}{C}$$



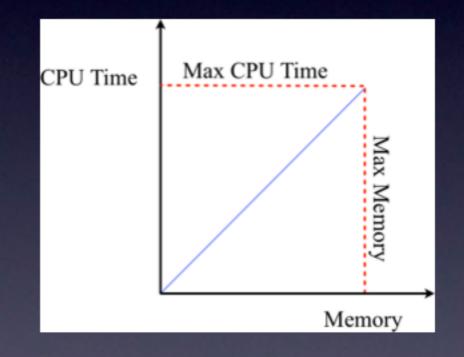
$$CPU Time = \frac{\chi_{CPU} N^4 N_{dyn}}{C}$$

Memory =
$$\chi_{\text{mem}} N^3$$



$$CPU Time = \frac{\chi_{CPU} N^4 N_{dyn}}{C}$$

Memory =
$$\chi_{\text{mem}} N^3$$



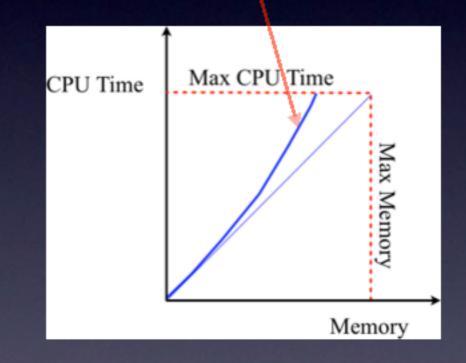
CPU Time =
$$\frac{\chi_{\text{CPU}}}{\chi_{\text{mem}}^{4/3}C} N_{\text{dyn}} \text{Memory}^{4/3}$$

 First consider scaling behavior of a serial, explicit, 3-D, uniform Eulerian code with N³ cells:

CPU Time \propto Memory^{4/3}

$$CPU Time = \frac{\chi_{CPU} N^4 N_{dyn}}{C}$$

Memory =
$$\chi_{\text{mem}} N^3$$



CPU Time =
$$\frac{\chi_{\text{CPU}}}{\chi_{\text{mem}}^{4/3}C} N_{\text{dyn}} \text{Memory}^{4/3}$$

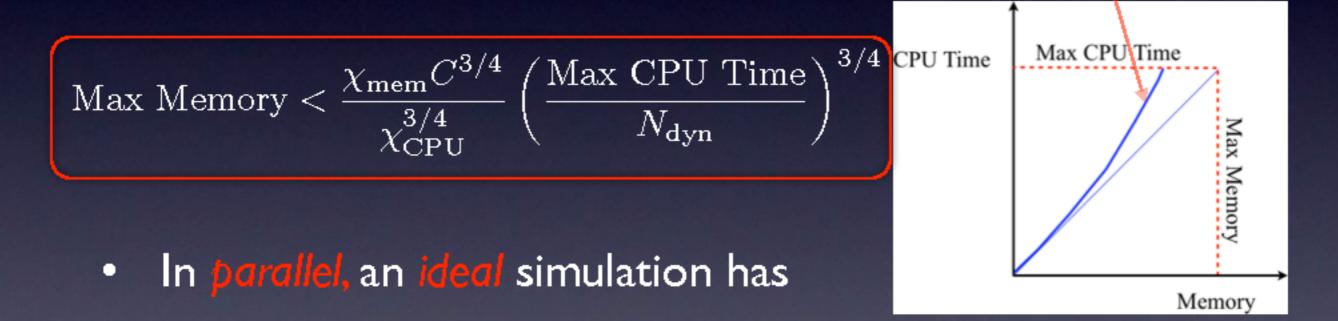
CPU Time \propto Memory^{4/3}

• Given maximum memory and CPU time bounds, a serial simulation is memory-bound if $_{
m CPU~Time} \propto {
m Memory}^{4/3}$

• Given maximum memory and CPU time bounds, a serial simulation is memory-bound if $m CPU~Time \propto Memory^{4/3}$

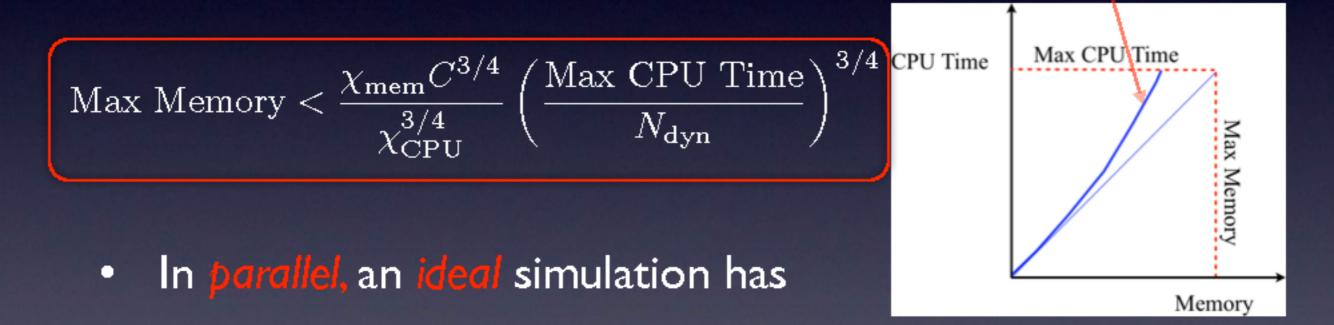
$$\text{Max Memory} < \frac{\chi_{\text{mem}}C^{3/4}}{\chi_{\text{CPU}}^{3/4}} \left(\frac{\text{Max CPU Time}}{N_{\text{dyn}}}\right)^{3/4} \text{CPU Time}$$
• In parallel, an ideal simulation has

• Given maximum memory and CPU time bounds, a serial simulation is memory-bound if $_{
m CPU~Time} \propto {
m Memory}^{4/3}$



Max Memory = Memory / CPU N_{CPU}

• Given maximum memory and CPU time bounds, a serial simulation is memory-bound if ${
m CPU~Time} \propto {
m Memory}^{4/3}$



Max Memory = Memory / CPU N_{CPU}

Max CPU Time = Max Wall Clock N_{CPU}

The memory-boundedness criterion for a parallel simulation becomes

$$\label{eq:memory_CPU} \text{Memory/CPU} < \chi_{\text{mem}} \left[\left(\frac{C \text{ Max Wall Clock}}{\chi_{\text{CPU}} N_{\text{dyn}}} \right)^3 \frac{1}{N_{\text{CPU}}} \right]^{1/4}$$

Scaling to typical values on a small cluster,

$${\rm Memory/CPU < 0.2~GB} \left[\left(\frac{(N_{\rm state}/10)(C/0.5)~({\rm Max~Wall~Clock/1wk})}{(\chi_{\rm CPU}/10~\mu s)(N_{\rm dyn}/10)} \right)^3 \frac{512}{N_{\rm CPU}} \right]^{1/4}$$

• Asymptotically-large, explicit simulations ($V_{
m CPU}
ightarrow \infty$) are always CPU-bound.

 Consider an ideal AMR simulation with of a total N_{blocks} of N_{grid}³ cells

Wall Clock =
$$\left(\frac{\chi_{\text{CPU}} N_{\text{dyn}}}{C N_{\text{CPU}}}\right) N^4$$

Fixing the wall clock time barrier,

$$N \propto N_{\mathrm{CPU}}^{1/4}$$

 The distribution of blocks over cores, fixing the wall clock time barrier and grind time,

$$\frac{N_{\rm blocks}}{N_{\rm CPU}} = \frac{1}{N_{\rm grid}^3} \left[\frac{C({\rm Wall~Clock})}{\chi_{\rm CPU} N_{\rm dyn}} \right]^{3/4} N_{\rm CPU}^{-1/4}$$

$$\frac{N_{\text{blocks}}}{N_{\text{CPU}}} = 12 \left(\frac{32}{N_{\text{grid}}}\right)^3 \left[\frac{(C/0.5)(\text{Wall Clock/1 wk})}{(\chi_{\text{CPU}}/10 \ \mu\text{s})(N_{\text{dyn}}/10)}\right]^{3/4} \left(\frac{N_{\text{CPU}}}{10^6}\right)^{-1/4}$$

 As we go beyond the petascale, AMR simulations will face increasing tight load-balancing issues.

- As we go beyond the petascale, AMR simulations will face increasing tight load-balancing issues.
- Possible strategies :

- As we go beyond the petascale, AMR simulations will face increasing tight load-balancing issues.
- Possible strategies :
 - Multithreading

- As we go beyond the petascale, AMR simulations will face increasing tight load-balancing issues.
- Possible strategies :
 - Multithreading
 - Smaller block sizes

- As we go beyond the petascale, AMR simulations will face increasing tight load-balancing issues.
- Possible strategies :
 - Multithreading
 - Smaller block sizes
 - Improved load-balancing algorithms

- As we go beyond the petascale, AMR simulations will face increasing tight load-balancing issues.
- Possible strategies :
 - Multithreading
 - Smaller block sizes
 - Improved load-balancing algorithms
 - Faster grind times through GPU or other technologies

Conclusions

- Continued success for computational astrophysics at scale will hinge upon our ability as a community to
 - Think deeply about modeling of turbulence in ways not yet manifested in existing codes
 - Think deeply about the ultimate limits to scalability and beginning to take long-term strategic directions to address these