Satellites and Subhalos in LCDM

James Bullock

Erik **Tollerud**

John Phillips

Mike **Boylan-Kolchin** Betsy **Barton**

PrimackPalooza (2011)

J. Bullock, UC Irvine

J. Bullock, UC Irvine

J. Bullock, UC Irvine

J. Bullock, UC Irvine

J. Bullock, UC Irvine

J. Bullock, UC Irvine

Tollerud, Boylan-Kolchin et al. 2011

Spectroscopic ~0.1 L* satellites within ~L* galaxy halos

Volume-Lim. SDSS for ~0.1 L* satellites (z<.034) Around isolated L* galaxies (not in clusters)

Mill II simulation "observed" like SDSS sample

Tollerud et al. 2011: Spectroscopic Sample

Tollerud, Boylan-Kolchin et al. 2011

~0.1 L* satellites within ~L* galaxy halos

Abazajian et al. 2009 Boylan-Kolchin et al. 2010 $\Delta V < 500$ km/s $\Delta V < 500$ km/s Hosts: $M_r < -20.8 \leftrightarrow V_{max} > 167 \text{ km/s}$

Satellites: $M_r < -18.3 \leftrightarrow V_{max} > 95 \text{ km/s}$

Abundance matching works at V_{infall}~100 km/s

~100 km/s subhalos

~0.1 L* satellites

Abundance matching works at V_{infall}~100 km/s

Pair-wise velocity distribution

Pair-wise velocity distribution

Bright satellites of isolated L* galaxies are RED

The LMC is unusually blue for a satellite

J. Bullock, UC Irvine

J. Bullock, UC Irvine

J. Bullock, UC Irvine

J. Bullock, UC Irvine

Host M_{*}~4.2eI0 M₀

Host M $_{\star}$ <4.2e10 M $_{\odot}$

Satellites of isolated Low Mass ($M_{\star}~3.5e10 M_{\odot}$) hosts

J. Bullock, UC Irvine

Satellites of isolated Massive (M*~6e10 Mo) hosts

J. Bullock, UC Irvine

Decreasing central galaxy mass

M**∗~7.4e10** M₀

M**★~4.2eI0** M₀

Phillips, Tollerud et al., in prep.

M**★~2.8e10** M_☉

Quench

Counts, **radial profile**, and **velocity distribution** of ~0.1L* satellites match ~100km/s subhalos down to ~50 kpc

J. Bullock, UC Irvine

~0.1L* satellites of isolated ~L* hosts are REDDER than field.

More massive centrals have more quenched satellites: Scale of quenching is $M_* \sim 4e10 M_0 \Leftrightarrow V_{max} \sim 200 \text{ km/s}$

Phillips, Tollerud et al., in prep

Caveat:

We have defined satellites to be objects within a fixed physical radius of 250kpc. Quenching is likely a strong function of R/R_{vir} (Wetzel et al. 2011). This will bias our results towards less quenching @ small M \star .

Phillips, Tollerud et al., in prep

Conclusions 3

At fixed stellar mass, red hosts have quenched their satellites more than blue hosts.

