Satellite Galaxy Evolution in Groups & Clusters

Andrew Wetzel Yale University

Jeremy Tinker (NYU) & Charlie Conroy (Harvard/CfA)

Tinker, Wetzel & Conroy 2011, ArXiv 1107.5046 Wetzel, Tinker & Conroy 2011, ArXiv 1107.5311 Wetzel, Tinker & Conroy, in prep

Why do these galaxies

have lower star formation rates (are redder) than these?

Galaxy Group Catalog

SDSS Data Release 7, NYU value-added catalog Blanton++2004 Spectroscopically derived star formation rates Brinchmann++2004 Group finding based on the Yang++2007 algorithm High purity & low contamination (~15%), calibrated against mocks

High-Resolution, Cosmological **N-body** Simulation

Box size Particle mass Force resolution 2.5 h⁻¹kpc Particle count

250 *h*⁻¹Mpc 10⁸ *h*⁻¹M_☉ 8.6 billion

Stellar mass from subhalo abundance matching Group finder applied to simulation

40Z

Understanding the environmental dependence of galaxy star formation

Understanding the environmental dependence of galaxy star formation

Environmental dependence = satellites

Understanding the environmental dependence of galaxy star formation

see also Hogg++2004 Kauffmann++2004 Blanton++2005 Blanton & Berlind 2007 Wilman++2010 Peng++2010, 2011 Joanna Woo's talk

Strong halo mass dependence of satellite quenched fraction

But, SSFR bimodality persists at all halo masses SFR is not affected for active satellites No lower halo mass threshold Hinchmann+2004, Kauffmann+2004, Kimm+2009, Peng +2011, Pasquali+2010

Strong dependence on halo-centric radius

Quenching not simply dependent on current, local halo density

SSFR bimodality persists at all radii

De Propris++2004, Blanton & Berlind 2007, Hansen++2009, Balogh++2000, Ellingson++2001, Weinmann++2006, von der Linden++2010, Prescott++2011, van den Bosch++2008, Pasquali++2009

Satellite infall times & SFR initial conditions

Satellite Infall Times

Understanding satellite quenching requires knowing central galaxy SFRs to z ~ I e.g., Berrier++2009, McGee+ +2009, Gill++2005, Ludlow+ +2009, Wang++2009

Evolution of central galaxy SFR

Tinker & Wetzel 2010

Importance of satellite quenching

Satellite quenching is more efficient/rapid in more massive satellites But, more galaxies quenched as satellites at lower mass Majority of quenched galaxies quenched as satellites at $M_{star} < 10^{10} M_{\odot}$

e.g., van den Bosch++2008

Testing Timescales & Mechanisms for Satellite Quenching

Satellite quenching best correlates with time since infall

Higher mass satellites quench faster

SFR fading timescales

 $SFR(\Delta t_{inf}) = SFR_{inf} \exp[-\Delta t_{inf}/\tau]$

SFR fading timescales

Satellite Galaxy Evolution in Groups & Clusters

- Satellite galaxies drive environmental SFR trends
- * Satellite quenching responsible for most quenched/ red-sequence galaxies at $M_{star} < 10^{10} M_{\odot}$
- Satellite quenched fraction increases with halo mass (no lower halo mass threshold) and toward halo center
- Satellites preserve SFR bimodality: delayed (2.5-5 Gyr) then rapid (800 Myr) quenching
- * Satellite time since infall best correlates with quenching

Andrew Wetzel

Santa Cruz Galaxy Workshop