An Analytic Model for Galaxy Growth Romeel Davé, Arizona with Kristian Finlator (UCSB), Ben Oppenheimer (Leiden)

Baryon Cycling

A continual cycle of inflows and outflows is increasingly believed to modulate galaxies' growth.

Paradigm shift or epicycle? New intuition or new params?

uomsod

Is there a way to formally represent baryon cycling?

The Equilibrium Condition Inflow = Star formation + Outflow SFR = Inflow/(1+ η)

 η = Outflow/SFR = mass loading factor

Inflow terms

• \dot{M}_{grav} = Gravitational infall of baryons into halo • $\Lambda CDM: \dot{M}_{grav} \propto f_b M_{halo}^{1.1} (1+z)^{2-2.5}$

• \dot{M}_{prev} = Mass rate into halo gas (not ISM). • $\zeta \equiv 1 \cdot \dot{M}_{prev} / \dot{M}_{grav}$

 \circ \dot{M}_{recyc} = Recycled winds

Inflow =
$$\zeta \dot{M}_{grav} + \dot{M}_{recyc}$$

Preventive Feedback: Photo-ionization, AGN, gravity, winds, ...?

w8n192cw z=30.0 Temperuture 7.0 6.0 5.0 4.0 4.0 0 1 2 3 4

Gas Fractions

• $f_{gas} = M_{gas}/(M_{gas}+M_*) = 1/(1+(t_{dep}sSFR)^{-1})$ where $t_{dep} = M_{gas}/SFR$.

When
$$M_{gas} \leq M_*$$
, then $f_{gas} \approx t_{dep} \, sSFR$

t_{dep} mostly depends on SF law only! All feedback info contained in sSFR.

Gas Fraction Scalings • For massive (low- f_{gas}) galaxies, $f_{gas} \sim t_{Hubble} M_*^{-0.3} (1+z)^{2.25} M_*^{\beta}$

Implications:

- f_{gas}(M_{*}) drops slowly with time: Supply rate drops faster than consumption rate
- Slope of $f_{gas}(M_*)$ at low f_{gas} is β -0.3, when $M_* \sim < M_{gas}$ it flattens.

Metallicities

• Z = y SFR / Inflow= $y/(1+\eta)$ Independent of ζ

Mass-metallicity rel'n reflects η(M_{*}).

Equilibrium Relations

O SFR = \dot{M}_{grav} (1+η)⁻¹ ζ (1- α_Z)⁻¹ • $f_{gas} = (1 + (t_{dep} \text{ sSFR})^{-1})^{-1}$ $O Z = y (1+\eta)^{-1} (1-\alpha_7)^{-1}$ Baryon cycling parameters: η , ζ , α_7 . Examples of intuition from these equations: • SFR and Z don't depend on SF Law! • Observed: $Z - M_*^{1/3} \rightarrow \eta(M_*) - M_*^{-1/3} - v_{circ}^{-1}$

Intuition from the Equilibrium Scenario

 Stellar and metal growth limited by cooling rate and conversion of gas into stars

ejective and preventive feedback

- Gas & metal content reflects "evolutionary state" gas supply vs. consumption rate
- Mergers fuel galaxy evolution are subdominant to cold streams for fueling
- Galaxies & IGM evolve independently are connected by baryon cycling