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Peaks exceeding threshold collapse to form galaxies/haloes

Large vs. small scales: Galaxies and Large-scale Structure

Larger scale fluctuations collapse ‘incompletely’ and subseq. along 3 axes
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This gives rise to the large-scale structure of the Universe...

Density fluctuations determine where and how structure forms
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cf. also Pauls & Melott (1995), Sheth&Tormen (2002), Shen et al. (2006)
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Galaxy formation and large-scale structure

The basic building block of CDM hierarchical
galaxy formation theory

The major player for cold accretion modes
“cold streams”

what...?!?

Rees & Ostriker 1977, White & Rees 1978

Birnboim & Dekel 2003, Keres et al. 2005
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Zel’dovich pancakes...
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‣ In 1st order Lagrangian perturbation theory, general perturbations 
collapse subsequently along 3 axes:

 

‣ “pancake” formation, 
                predict asymptotic morphology.

‣ In reality this is a multi-scale phenomenon.

ρ(�q, t) =
ρ(�q, 0)

[1−D+(t)λ1] [1−D+(t)λ2] [1−D+(t)λ3]

(Zel’dovich 1970)

λk ∝ eig ( ∂i∂jΦ )

λ1, λ2, λ3

Yakov Zel’dovich‣ halos embedded in filaments embedded in 
pancakes with increasing scale
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Idealized plane wave-collapse
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from Teyssier et al. (1998)

adiabatic

Sinusoidal velocity perturbation along one dimension with self-gravity
-> steepening wave, shock/caustic arising at singularity

Features of the collisional component:

•outward propagating high Mach number 
accretion shock

•heated interior

•cold core when cooling

Features of the collisionless component:

•outward propagating caustic

•high density, velocity dispersion interior
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...and around massive high-z galaxies?
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Thin slice at 2Rvir around ~8x1011-Mo 
sized galaxy at z~1.8 in Mollweide proj.

gas entropy

DM density

Planar structure

Shocks on both sides

Low entropy ‘filling’

Gas accretes onto plane,
then into streams

Thicker in DM

More structures in DM -> 
still not enough res in gas?
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vis. with Ralf Kähler (KIPAC)
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1 pancake, 2 pancakes, 3 pancakes....
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SFG2

2Rvir

1Rvir

entropy DM density

But: plane of strongest influx is not necessarily identical to one of the pancakes
(c.f. also Danovich et al. 2011)

Slices around ~5x1011-Mo 
sized galaxy at z~6.4
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vis. with Ralf Kähler (KIPAC)
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...with the right properties?
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Density

Entropy

Temperature

Mach number

Vorticity

DM density

DM caustics (solid gray) 
vs. 

hydro shocks (dashed gray)

Shandarin & Zeldovich (1989):

we measure

Pancake profiles...
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As the streams, does not shock at Rvir...
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Entropy

Flux density

Metal fraction
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Planar influx into the halo
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Entropy rises when pancake density 
becomes comparable to ambient

At all radii higher infall velocity. Infall 
gets slower when entropy rises

~Rvir/2

Pancake profile inside the halo...
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Planar mergers? Stream mergers?

13

Density 
Flux density

Slice thickness 17kpc - 34kpc



Oliver Hahn 14

What about AM?

Specific AM of gas 10-20% 
lower than DM outside Rvir

->dissipation

Comparable at ~Rvir/4

Again dissipation at smaller radii

cf. also Kimm et al. (2011)

Ratio of gas to CDM specific AM...
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Coherent AM by pancaking?

MW1

SFG2

log r/Rvir

log r/Rvir

Angle-cosines between disk and cold gas at some radius r

Accreting gas becomes aligned inside the halo....
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Temporal coherence...
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Define pancake by plane of maximum flux within aperture
Very stable over time (Gyrs)
Disk AM less stable

No clear evidence for alignment or anti-alignment, but hard 
to define plane in cases of several planes.
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• Triaxial collapse leads to planar structures around massive galaxies

• Pancakes contain cooled low metallicity gas within two shocks, 
extend down to ~Rvir/3

• DM pancakes are more extended

• specific AM is dissipated by LSS formation outside Rvir

• AM <-> large-scale correlations? stay tuned!

• unclear dissipation processes in inner halo...  stay tuned!
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Summary


