

# Pancakes served cold

Oliver Hahn KIPAC/Stanford

Hahn, Dekel, Ceverino, Primack et al., 2011, in prep.

## Large vs. small scales: Galaxies and Large-scale Structure

Density fluctuations determine where and how structure forms

Peaks exceeding threshold collapse to form galaxies/haloes





This gives rise to the large-scale structure of the Universe...

cf. also Pauls & Melott (1995), Sheth&Tormen (2002), Shen et al. (2006)

Oliver Hahn

## Galaxy formation and large-scale structure



# Zel'dovich pancakes...

In 1st order Lagrangian perturbation theory, general perturbations collapse subsequently along 3 axes:

$$\rho(\vec{q}, t) = \frac{\rho(\vec{q}, 0)}{\left[1 - D_{+}(t)\lambda_{1}\right] \left[1 - D_{+}(t)\lambda_{2}\right] \left[1 - D_{+}(t)\lambda_{3}\right]}$$

 $\lambda_k \propto \operatorname{eig}\left(\partial_i \partial_j \Phi\right)$ 

(Zel'dovich 1970)

- "pancake" formation,  $\lambda_1, \lambda_2, \lambda_3$  predict asymptotic morphology.
- In reality this is a multi-scale phenomenon.
- halos embedded in filaments embedded in pancakes with increasing scale



Yakov Zel'dovich

# Idealized plane wave-collapse

Sinusoidal velocity perturbation along one dimension with self-gravity -> steepening wave, shock/caustic arising at singularity



Features of the collisional component:

 outward propagating high Mach number accretion shock

- heated interior
- cold core when cooling

Features of the collisionless component:

- •outward propagating caustic
- •high density, velocity dispersion interior



from Teyssier et al. (1998)

## ...and around massive high-z galaxies?



Thin slice at 2Rvir around  $\sim 8 \times 10^{11}$ -M<sub>o</sub> sized galaxy at z $\sim 1.8$  in Mollweide proj.

### Planar structure

- Gas accretes onto plane, then into streams
- Shocks on both sides
- Low entropy 'filling'
- Thicker in DM

More structures in DM -> still not enough res in gas?





vis. with Ralf Kähler (KIPAC)

## 1 pancake, 2 pancakes, 3 pancakes....



SFG2

**But: plane of strongest influx is not necessarily identical to one of the pancakes** (c.f. also Danovich et al. 2011)



## ...with the right properties?

#### Pancake profiles...

DM caustics (solid gray) vs. hydro shocks (dashed gray)

Shandarin & Zeldovich (1989):  $\frac{x_{\rm sh}}{x_s} = \frac{\gamma - 1}{2} \left(\gamma + 2\right)^{1/2} \stackrel{\gamma = 5/3}{\simeq} 0.64$ 

we measure

 $\frac{x_{\rm sh}}{x_s} \simeq 0.6$ 



## As the streams, does not shock at Rvir...

Entropy

WW1 (z=1.38095) : mass flux density

Metal fraction

Flux density



Oliver Hahn

## Planar influx into the halo

#### Pancake profile inside the halo...

Entropy rises when pancake density becomes comparable to ambient

At all radii higher infall velocity. Infall gets slower when entropy rises ~Rvir/2



## Planar mergers? Stream mergers?

#### Density



Slice thickness 17kpc - 34kpc









## What about AM?

### Ratio of gas to CDM specific AM...

Specific AM of gas 10-20% lower than DM outside Rvir ->dissipation

Comparable at ~Rvir/4

Again dissipation at smaller radii



cf. also Kimm et al. (2011)

## Coherent AM by pancaking?

Angle-cosines between disk and cold gas at some radius r



Oliver Hahn

## Temporal coherence...

Define pancake by plane of maximum flux within aperture Very stable over time (Gyrs) Disk AM less stable



No clear evidence for alignment or anti-alignment, but hard to define plane in cases of several planes.

- Triaxial collapse leads to planar structures around massive galaxies
- Pancakes contain cooled low metallicity gas within two shocks, extend down to ~Rvir/3
- DM pancakes are more extended
- specific AM is dissipated by LSS formation outside Rvir
- AM <-> large-scale correlations? stay tuned!
- unclear dissipation processes in inner halo... stay tuned!