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Simulations
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Post-Millenial Computational 
Astrophysics 

• Large-Scale Structure 

• Compact Objects,  Accretion Disks

• SF at high and low z, high and low mass

• SNe Ia & II

• Galaxy Formation
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The Universal Nature 
of Turbulent Flows

• Turbulence at high Reynolds is universal - the inertial 
scaling laws of a homogeneous, isotropic turbulent 
velocity field are independent of the driving.

• This is one of the deepest lessons of Kolmogorov 
(1941).
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Hierarchy of Fidelity in 
Turbulence Modeling

• Direct Numerical Simulation (DNS)

• Resolves Kolmogorov scale

• Large Eddy Simulation (LES)

• Introduces a subgrid model below 
the filter scale

• Reynolds-Averaged Navier Stokes 
(RANS)

log E (k)

log k

Modeled in RANS

Simulated in DNS

Modeled in LES

log (2π/L) log (2π/∆x)

η ! 2 − 4∆x

log (2π/λSGS)

λSGS

k-5/3
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Hierarchy of Fidelity in 
Turbulence Modeling

• Implicit Large Eddy Simulation (ILES)

• Numerical solution to Euler 
equations

• Introduces an effective subgrid 
model and an effective viscosity 
through numerical dissipation

log E (k)

log k

Modeled in RANS

Simulated in DNS

Modeled in ILES

log (2π/L) log (2π/∆x)

log (2π/λSGS)

k-5/3

η ! ∆x
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(Fisher et al, 2008, Benzi et al, 2008, Arneodo et al, 2008, Benzi et al, 2010)

Weakly-Compressible 
Hydrodynamic Turbulence

Thursday, December 16, 2010



•  Large-scale homogeneous, isotropic compressible fully-
developed turbulence :

• 18563  base grid size

• 2563 Lagrangian tracer particles

• 3D turbulent RMS Mach number = 0.3  (1D = .17) in 
steady-state

• Reλ ~ 600 

• Roughly one week wall clock on 65,536 processors in 
CO mode

BG/L Turbulence Run
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Visualization of Lagrangian Tracers
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Visualization of Lagrangian Tracers
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Universality of Lagrangian Structure of 
Turbulence

Sp(τ) = < |v(t + τ)− v(t)|p > ∝ τ ζp

(A
rn

eo
do

 e
t a

l, 
20

08
)

Thursday, December 16, 2010



Universality of Lagrangian Structure of 
Turbulence

Sp(τ) = < |v(t + τ)− v(t)|p > ∝ τ ζp

(A
rn

eo
do

 e
t a

l, 
20

08
)

Thursday, December 16, 2010



Astrophysical Simulation 
Modeling
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Astrophysical Simulation 
Modeling

• Current turbulent modeling succeeds because the 
velocity field is universal

• Turbulence modeling may pose significant challenges 
to future astrophysical studies of coupled multifluid, 
multiphysics processes :

• Turbulent Combustion (SNe Ia)

• Turbulent Mixing (Planet Form., GMCs/SF, SNe II) 
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Buoyancy-Driven Turbulent 
Nuclear Combustion

(Townsley et al, 2009)

• Ongoing work targets the issue of turbulent nuclear 
combustion

• Simulations resolve the Gibson scale and the flame-
polishing scale

• Adaptive-mesh refinement calculations using FLASH3 
up to full scale of ANL BG/P Intrepid, ~     cores and         
grids

105105
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Buoyancy-Driven Turbulent 
Nuclear Combustion

(Townsley et al, 2009)

• Calculations demonstrated the feasibility of pursuing 
local AMR simulations up to the petascale

• Lessons learned from this project can help inform 
progress to exascale and beyond
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II. Hardware, Algorithms, and 
Asymptotically-Large Simulations
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A Brief History of 
Supercomputing

Earth Simulator
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Blue Gene Series

• BG/L, 2004

• 2 Cores/node

• 700 MHz/core, 512 MB/core

• BG/P, 2007

• 4 Cores/Node

• 850 MHz/core, 1 GB/core

• BG/Q, 2011

• 17 Cores/node

• 1.6 GHz/Core,1 GB/core
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• Ideal -

• Perfect load balance

• Perfect scalability

• Infinite memory bandwidth (no memory wall!)

• Neglect cost and power considerations

• Explicit -

• Timestep limited by CFL Condition

• Idealized assumptions allow us to focus on deep limits to 
scalability and strategies to address these
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• First consider scaling behavior of a serial, explicit, 3-D, 
uniform Eulerian code with N3 cells :

CPU Time =
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C

Memory = χmemN3
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

CPU Time ∝ Memory4/3

Max Memory <
χmemC3/4

χ3/4
CPU

�
Max CPU Time

Ndyn

�3/4
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• Given maximum memory and CPU time bounds, a serial 
simulation is memory-bound if CPU Time ∝ Memory4/3

Max Memory <
χmemC3/4

χ3/4
CPU

�
Max CPU Time

Ndyn

�3/4
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• Given maximum memory and CPU time bounds, a serial 
simulation is memory-bound if

• In parallel, an ideal simulation has

CPU Time ∝ Memory4/3

Max Memory <
χmemC3/4

χ3/4
CPU

�
Max CPU Time

Ndyn

�3/4

Max Memory = Memory / CPU NCPU

Max CPU Time = Max Wall Clock NCPU
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• The memory-boundedness criterion for a parallel 
simulation becomes

• Scaling to typical values on a small cluster,

• Asymptotically-large, explicit simulations (                 ) 
are always CPU-bound.

Memory/CPU < χmem

��
C Max Wall Clock

χCPUNdyn

�3 1
NCPU

�1/4

Memory/CPU < 0.2 GB

��
(Nstate/10)(C/0.5) (Max Wall Clock/1wk)

(χCPU/10 µs)(Ndyn/10)

�3 512
NCPU

�1/4

NCPU →∞
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• Consider an ideal AMR simulation with of a total Nblocks of 
Ngrid3 cells

• Fixing the wall clock time barrier, 

Wall Clock =
�

χCPUNdyn

CNCPU

�
N4

N ∝ N1/4
CPU
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• The distribution of blocks over cores, fixing the wall clock 
time barrier and grind time,

Nblocks

NCPU
=

1
N3

grid

�
C(Wall Clock)

χCPUNdyn

�3/4

N−1/4
CPU

Nblocks

NCPU
= 12

�
32

Ngrid

�3 �
(C/0.5)(Wall Clock/1 wk)
(χCPU/10 µs)(Ndyn/10)

�3/4 �
NCPU

106

�−1/4
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Theory of Ideal, Asymptotically-
Large, Explicit Simulations

• As we go beyond the petascale, AMR simulations will 
face increasing tight load-balancing issues.

• Possible strategies :

• Multithreading 

• Smaller block sizes

• Improved load-balancing algorithms 

• Faster grind times through GPU or other technologies
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Conclusions
• Continued success for computational 

astrophysics at scale will hinge upon our 
ability as a community to 

• Think deeply about modeling of 
turbulence in ways not yet manifested in 
existing codes

• Think deeply about the ultimate limits to 
scalability and beginning to take long-term 
strategic directions to address these
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