Algorithms for Higher Order Spatial Statistics

István Szapudi

Institute for Astronomy
University of Hawaii
Future of AstroComputing Conference, SDSC, Dec 16-17

Outline

(9) Introduction
(2) Three-point Algorithm

Random Fields

Definition

A random field is a spatial field with an associated probability measure: $\mathcal{P}(A) \mathcal{D} A$.

- Random fields are abundant in Cosmology.
- The cosmic microwave background fluctuations constitute a random field on a sphere.
- Other examples: Dark Matter Distribution, Galaxy Distribution, etc.
- Astronomers measure particular realization of a random field (ergodicity helps but we cannot avoid "cosmic errors")

Definitions

- The ensemble average $\langle A\rangle$ corresponds to a functional integral over the probability measure.
- Physical meaning: average over independent realizations.
- Ergodicity: (we hope) ensemble average can be replaced with spatial averaging.
- Symmetries: translation and rotation invariance

Joint Moments

$$
F^{(N)}\left(x_{1}, \ldots, x_{N}\right)=\left\langle T\left(x_{1}\right), \ldots, T\left(x_{N}\right)\right\rangle
$$

Connected Moments

These are the most frequently used spatial statistics

- Typically we use fluctuation fields $\delta=T /\langle T\rangle-1$

Connected moments are defined recursively

$$
\left\langle\delta_{1}, \ldots, \delta_{N}\right\rangle_{c}=\left\langle\delta_{1}, \ldots, \delta_{N}\right\rangle-\sum_{P}\left\langle\delta_{1} \ldots \ldots \delta_{i}\right\rangle_{c} \ldots\left\langle\delta_{j} \ldots \delta_{k}\right\rangle_{c} \ldots
$$

- With these the N-point correlation functions are

$$
\xi^{(N)}(1, \ldots, N)=\left\langle\delta_{1}, \ldots, \delta_{N}\right\rangle_{c}
$$

Gaussian vs. Non-Gaussian distributions

These two have the same two-point correlation function or $P(k)$

- These have the same two-point correlation function!

Basic Objects

These are N-point correlation functions.

Special Cases

Two-point functions
Three-point functions Cumulants
Cumulant Correlators Conditional Cumulants

$$
\begin{gathered}
\left\langle\delta_{1} \delta_{2}\right\rangle_{1} \\
\left\langle\delta_{1} \delta_{2} \delta_{3}\right\rangle^{2} \\
\left\langle\delta_{R}^{N}\right\rangle_{c}=S_{N}\left\langle\delta_{R}^{2}\right\rangle^{N-1} \\
\left\langle\delta_{1}^{N} \delta_{2}^{M}\right\rangle_{c} \\
\left\langle\delta(0) \delta_{R}^{N}\right\rangle_{c}
\end{gathered}
$$

- In the above δ_{R} stands for the fluctuation field smoothed on scale R (different R's could be used for each δ 's).
- Host of alternative statistics exist: e.g. Minkowski functions, void probability, minimal spanning trees, phase correlations, etc.

Complexities
 Combinatorial explosion of terms

- N-point quantities have a large configuration space: measurement, visualization, and interpretation become complex.
- e.g, already for CMB three-point, the total number of bins scales as $M^{3 / 2}$
- CPU intensive measurement: M^{N} scaling for N-point statistics of M objects.
- Theoretical estimation
- Estimating reliable covariance matrices

Algorithmic Scaling and Moore's Law

- Computational resources grow exponentially
- (Astronomical) data acquisition driven by the same technology
- Data grow with the same exponent

Corrolary

Any algorithm with a scaling worse then linear will become impossible soon

- Symmetries, hierarchical structures (kd-trees), MC, computational geometry, approximate methods

Example: Algorithm for 3pt

Other algorithms use symmetries

Algorithm for 3pt Cont'd

- Naively N^{3} calculations to find all triplets in the map: overwhelming (millions of CPU years for WMAP)
- Regrid CMB sky around each point according to the resolution
- Use hierarchical algorithm for regridding: $N \log N$
- Correlate rings using FFT's (total speed: 2 minutes/cross-corr)
- The final scaling depends on resolution $N\left(\log N+N_{\theta} N_{\alpha} \log N_{\alpha}+N_{\alpha} N_{\theta}\left(N_{\theta}+1\right) / 4\right) / 2$
- With another cos transform one and a double Hankel transform one can get the bispectrum
- In WMAP-I: 168 possible cross correlations, about 1.6 million bins altogether.
- How to interpret such massive measurements?

3pt in WMAP

Recent Challanges

- Processors becoming multicore (CPU and GPU)
- To take advantage of Moore's law: parallelization
- Disk sizes growing exponentially, but not the IO speed
- Data size can become so large that reading might dominate processing
- Not enough to just consider scaling

Alternative view of the algorithm: lossy compression

Compression

- Compression can increase processing speed simply by the need of reading less data
- The full compressed data set can be sent to all nodes
- This enables parallelization in multicore or MapReduce framework
- For any algorithm specific (lossy compression) is needed

Another pixellization as lossy compression

Summary

- Fast algorithm for calculating 3pt functions with $N \log N$ scaling instead of N^{3}
- Approximate algorithm with a specific lossy compression phase
- Scaling with resolution and not with data elements
- Compression in the algorithm enables multicore or MapReduce style parallelization
- With a different compression we have done approximate likelihood analysis for CMB (Granett,PhD thesis)

