Fast generation of ensembles of cosmological N-body simulations via mode-resampling

Michael D. Schneider

LLNL

December 16-17, 2010

In collaboration with: Istvan Szapudi, Shaun Cole, Carlos Frenk
Motivation: power spectrum covariance

- Cosmological parameter estimation from surveys of LSS require knowledge of the nonlinear power spectrum covariance.
- Takahashi et al. (2009) use 5000 simulations to estimate the matter power spectrum covariance.
 - Nonlinearity of density field degrades S/N for power spectrum amplitude by ~ 4 (Neyrinck & Szapudi 2007, Rimes & Hamilton 2006)
 - PT or HM not accurate enough
- “Beat–coupling” requires independent mocks (Hamilton et al. 2006)
Adding large-scale perturbations
Peak–background split

Related work:
Little, Weinberg, Park (1991)
Tormen & Bertschinger (1996)
Cole (1997)

Two dominant effects of long-wavelength perturbations:

1. sub-volumes expanded or compressed (Zeldovich move)
2. sub-volumes gravitationally evolve with different effective background matter density (time-perturbation)

\[D(a', \Omega_0) \approx D(a, \Omega_0(1 + \delta_L(x, a))) \]
Full algorithm for adding large-scale modes

1. Generate ICs with zero power for $k < k_{\text{thresh}}$.
2. Run N-body sim., saving snapshots at closely-spaced times and into the future.
3. Draw large–scale Fourier modes from Gaussian distribution.
4. Apply Zeldovich move evaluated at $z = 0$.
5. Use large–scale modes to calculate $x' \rightarrow \Omega'_m \rightarrow a'$.
6. Use saved snapshots to find particle positions at a'.
Nonlinear power spectrum recovery

(a) SCDM

(b) ΛCDM
Power spectrum covariance estimates

\[\text{var}(P(k)) = (2P_{\text{lin}}^2(k) N_k) \]

- \(k \ [h/\text{Mpc}] \)
- Computations:
 - Takahashi et al.
 - 20 simulations
 - 1 simulation
 - 20 sims., no resamp.

\(k: 0.025 \ [h/\text{Mpc}] \)

\(k: 0.125 \ [h/\text{Mpc}] \)

\(k: 0.225 \ [h/\text{Mpc}] \)

\(k: 0.325 \ [h/\text{Mpc}] \)
Covariance convergence rates

Extrapolating:
~ 385 of our simulations equivalent to 1000 “standard” simulations.
Conclusions

- Method to resample large-scale modes
 - Accurate nonlinear power spectrum
 - Introduce non-zero cross-covariance
- Improve convergence rate of power spectrum covariance estimates.
 - Useful for generating mocks for parameter estimation.
- Apply to rescaling simulations for new input parameters (following Angulo & White 2009)?
- Include dynamical effects from modes larger than the simulation box size?