The CO-H₂ Conversion Factor in Galaxies

Desika Narayanan Bart J Bok Fellow University of Arizona

(With: Mark Krumholz, Eve Ostriker, Lars Hernquist)

 H_2 CI CI CI H_2 H_2 CO H_2 H_2 H₂ CO CI CO H_2 H_2 CO H_2 H_2 H_2 H_2 CI I.Assume GMC is viralized and use CO line width as mass measurement

II. Assume a DTG ratio and get dust masses

 H_2 CI CI CI H_2 H_2 CO H_2 H_2 H₂ CO CI CO H_2 H_2 CO H_2 H_2 H_2 H_2 CI

I.Assume GMC is viralized and use CO line width as mass measurement

II. Assume a DTG ratio and get dust masses

III. CR + H₂ --> γ -ray

 H_2 CI CI CI H_2 H_2 CO H_2 H_2 H₂ CO CI CO H_2 H_2 CO H_2 H_2 H_2 H_2 CI I.Assume GMC is viralized and use CO line width as mass measurement

II. Assume a DTG ratio and get dust masses

III. CR + H₂ --> γ -ray

 $X_{co} = N_{H2}/I_{co} = 2-4 \times 10^{20} \text{ cm}^{-2}/\text{K-km s}^{-1}$

Xco is Similar for Local Group

Blitz et al., PPV Review Article, 2006

$X_{CO} = N_{H2}/I_{CO}$ Depends on Galactic Environment

$X_{CO} = N_{H2}/I_{CO}$ Depends on Galactic Environment: High Surface Densities

$Xco = N_{H2}/I_{CO}$ Depends on Galactic Environment: Low Metallicities

Leroy et al. 2011 (local galaxies)

Genzel et al. 2011 (z~1)

What's at Stake

Molecular to Atomic Gas Mass Ratios

KS Relations and Star Formation Efficiencies

6 7 log(L_{co} / Jy km/s Mpc^{*})

14 0.5 99% Bow06.BR (z=0) y=+1.15"x +0.63 (0.12) 95% y = +1.15 (0.12) x +0.02 (1.1), Н, 90% 0.0 z>1 mergers z-0 normal & starburs 80% z-1 SEGs 64% 13 z~1.5 SFGs -0.5 z-2 SFGs z-0 mergers og (M_{H2}/M_{setar} z-0 interacting log (L_{FIR} [L_{sun}]) -1.0 Leroy et al. 2009 12 Saintonge et al. 2011 -1.5 Lagos et al. 2011 -2.0 11 merge -2.5 0.5 10 99% 95% typical uncertainty 0.0 90% HI 80% 64% 9 -0.512 8 9 10 11 M/M/M/go $\log \left({\rm L_{CO \ 1-0}} \right. \left[{\rm K \ km/s \ pc}^2 \right] \right)$ -1.5 Genzel et al. 2010 -2.0 Daddi et al. 2010 GASS (HI) -2.5 COLD GASS (H, CO Luminosity Functions and $\Omega_{H2}(z)$ Bothwell etal. (HI & H₂) -3.0 10.0 10.5 11.5 11.0 log(M_{stellar}/M_o) Bow06.BR CO(1-0) og(dn/dlog(L_{co})/h^{*}Mpc^{*}) H_{2} og(dn/dlogM_{H2}/h^{*}Mpc^{*}) -2 -2 -3 -3 Lagos et al. 2011 **Obreschkow & Rawlings 2009** Keres, Yun & Young 2003 z=8 L_{co} Keres etal. 60µm (z=0) -6 Keres etal. B-band (z=0) .z=8 7 10 11 8 9

log(M_H/h⁴ M₀)

Gadget: to get model discs and mergers at z=0,2

Sunrise: to get dust temperatures

Jonsson et al. 2006, 2009 Jonsson & Primack 2010

Springel et al. 2003-2005

What do the molecules look like?

-H2-HI balance calculated by balancing growth of H2 on grains with LW band photodissociation (Krumholz, McKee, Tumlinson 2010)

-CO-CI balance function of ISRF, Z (Wolfire et al. 2010)

-Temp calculated by balancing PE, CR heating, line cooling and thermal exchange with dust (Krumholz, Leroy, McKee 2011; Juvela 2011)

-GMCs isothermal, constant density spheres with floor surface density of $\sim 10^{22}$ cm⁻³

-Monte Carlo code: Calculates full statistical equilibrium of level populations in a 3D velocity, temp, density field within GMCs and galaxies (DN+2008, Krumholz & Thompson 2007, DN+2011)

Desika Narayanan

Xco in Discs and Mergers

$X_{co} = N_{H_2}/I_{CO} \sim N_{H_2}/(T^*\sigma)$

Ть∫

σ

Desika Narayanan

$Xco = N_{H2}/I_{CO} \sim N_{H2}/(T^*\sigma)$

$Xco = N_{H2}/I_{CO} \sim N_{H2}/(T^*\sigma)$

$X_{co} = N_{H2}/I_{co} \sim N_{H2}/(T^*\sigma)$

 X_{co} (MW) = few x 10²⁰ cm⁻²/K-km/s

$Xco = N_{H2}/I_{CO} \sim N_{H2}/(T^*\sigma)$

$Xco = N_{H2}/I_{CO} \sim N_{H2}/(T^*\sigma)$

$X_{CO} = N_{H_2}/I_{CO} \sim N_{H_2}/(T^*\sigma)$

 X_{co} (MW) = few x 10¹⁹ cm⁻²/K-km/s

Xco decreases with increasing Σ_{H2}

Xco increases with decreasing Z

A General Prediction for Xco

Xco ~ Σ_{H2} -^{0.2} e^{-Z/Z}

A General Prediction for Xco

 $X_{CO} \sim \overline{\Sigma}_{H2} - 0.2 e^{-Z/Z_{\odot}}$

Conclusions

Xco a continuous function dependent on metallicity and thermal and dynamical state of galaxies

- In starburst galaxies hotter and high velocity dispersion gas causes Xco (on average) to be lower than Galactic mean

- In low metallicity galaxies, lack of dust shielding increases mass of CO-dark clouds, and drives Xco to larger values than Galactic mean