Stellar Populations Produced in Gravitationally Unstable Disks

John Forbes
Galaxy Workshop - August 9, 2011

With Mark Krumholz and Andi Burkert
Thick Disks at Redshift Zero

Older stars have higher velocity dispersions

Older stars have higher velocity dispersions
The Usual Story

• “This correlation is believed to arise because the irregular gravitational fields of spiral arms and/or molecular clouds gradually increase the random velocities of disk stars.” - Binney and Tremaine, chapter 1
The Usual Story

• “This correlation is believed to arise because the irregular gravitational fields of spiral arms and/or molecular clouds gradually increase the random velocities of disk stars.” - Binney and Tremaine, chapter 1

• i.e.

 THIN DISK →

 SOMETHING HAPPENS →

 THICK DISK
The Usual Story

• “This correlation is believed to arise because the irregular gravitational fields of spiral arms and/or molecular clouds gradually increase the random velocities of disk stars.” - Binney and Tremaine, chapter 1

• i.e.

 THIN DISK →

 SOMETHING HAPPENS → THICK DISK

 Two-body scattering Major Mergers
 Minor Mergers Direct Accretion of Stars
 Perturbing galaxies Scattering off Molecular Clouds
 Spiral Waves Popping Clusters
High-z disks aren't thin!

Genzel+ 2011

Elmegreen+ 2005
Model Overview

- **Goal:** Simulate disks self-regulated near $Q=1$ over cosmological times

- **Assumptions:**
 - The disk is axisymmetric and thin
 - Fixed radius, circular velocity, and potential
 - $Q=1$ at all radii at all times

- **Variables**
 - **Gas:** $\Sigma(r,t)$, $\sigma(r,t)$, $Z(r,t)$
 - **Stars:** $\Sigma_*(r,t)$, $\sigma_*(r,t)$, $Z_*(r,t)$
Dynamics in a Q~1 Disk

Radiation

Accretion

Bulge
Maintaining Gravitational Instability

• Formally, changes in the gas state variables depend on the torque:

\[T = \int 2\pi r^2 T_{r\phi} dz \]

• So, set the torques such that \(Q = 1 \), or \(dQ/dt = 0 \)

\[\frac{dQ}{dt} = \frac{\partial Q}{\partial \Sigma} \frac{\partial \Sigma}{\partial t} + \frac{\partial Q}{\partial \sigma} \frac{\partial \sigma}{\partial t} + \frac{\partial Q}{\partial \Sigma_*} \frac{\partial \Sigma_*}{\partial t} + \frac{\partial Q}{\partial \sigma_*} \frac{\partial \sigma_*}{\partial t} = 0 \]
Physical Ingredients

• Star Formation

\[\dot{\Sigma}^{SF}_* = \epsilon_{ff} f_{H_2} \Sigma \sqrt{G \rho} \]

• Gas Dissipation
 • Supersonic turbulence decays in a crossing time

\[\mathcal{L} = \eta \Sigma \sigma^2 \Omega \left(1 - \frac{\sigma_t^2}{\sigma^2} \right)^{3/2} \]

Krumholz & Tan 2007
Stellar Migration

- When $Q_s < \sim 2$, transient spirals heat the stars
- This requires a net inward migration by conservation of energy
- Rate of inward migration set by assuming:

$$\frac{dQ_s}{dt}_{\text{mig}} = \frac{2 - Q_s}{T}$$

- $T \sim 5$ orbital times
Sample Run

- Smoothed Milky-Way like accretion history (Bouche+ 2010)
- Starting $z=2$
- Disk radius = 10 kpc
- Circular velocity = 220 km/s
- Star-formation efficiency per free-fall time= 0.01
- Stellar Migration Time = 10 outer orbits
- Maximal gas dissipation (all turbulent KE radiated in a scale height crossing time)
Column Density Evolution

- Gas
- Stars
- Gas Fraction

Radius
Velocity Dispersion Evolution

Gas

Stars

Gas/Stars

Radius
Stars

- Solar neighborhood
- At $z=0$
Summary and Outlook

• 1-D simulation of gravitationally unstable galaxies from $z=2$ to $z=0$ on 1 CPU in ~ 1 hour [look for JF, Krumholz, & Burkert (2011, in prep)]

• Near-term Applications
 • Age-velocity dispersion- metallicity correlation
 • Parameter studies (dissipation, star formation, halo size)
 • More realistic accretion histories

• Longer-term extensions
 • Self-consistent evolution of circular velocity, radius
 • More sophisticated treatment of metals