From Galaxy Formation to Kinematics

christopher erick moody

In collaboration with: Joel Primack, Aaron Romanowsky, Greg Novak and TJ Cox.
Fast rotators are above the isotropic, oblate rotator line

Slow rotators are \textbf{not} scaled-down fast rotators

- More massive
- Round, have $\epsilon \sim 0.0-0.2$

How do slow rotators form?

(Emsellem et al. 2011)
Simulated Binary Mergers

- Simulated binary mergers and remergers with varying mass ratios, initial conditions, and orbital parameters at high resolution
- Form galaxies with $\lambda < 0.1$, but are far too elongated $\epsilon = 0.0 - 0.4$

→ Do not form slow & round rotators in binary simulations

(Bois et al. 2011)
Simulated Multiple

- Bournaud et al. 2007 simulated 10 1:10 mergers, 5 1:5 mergers, etc.
- Multiple mergers decrease remnant v/σ, form rounder remnants
- Results are independent of mass ratio; only dependent on remnant mass

→ Did not reach slow or round rotators, but there is a trend towards slow/round with multiple mergers (Bournaud et al. 2007)
Simulations: Progenitors

- All late-type galaxy models
- Designed to model SDSS galaxies
- D, Y, Z series are bulgeless
- G3, G2, G1, G0 in order of descending mass
- G3 also a gas fraction series
- G3BL is a G3 without a bulge (not shown)
- Sbc series have small bulges

→ Progenitors cover a range of gas fractions (‘gf’) and mass ranges, and may be bulgeless (‘BL’).
Schematic: Assembly

Binary mergers
- Two progenitors
- Minor, major mergers
- $R_{peri}, \epsilon,$

Sequential mergers
- Either G2 or G1
- Either 4 or 8 overlapping major+ minor mergers

Remergers
- Either G2 or G1
- Also, 4 and 8 progenitors
- Every merger a is always a remerger

Cosmologically-motivated orbits. Not statistical.

Randomly chosen initial orientations, impact parameters. Idealized simulations.
With increasing gas fraction: faster rotators, higher ellipticity

rotation

 elongate

round

ellipticity

dispersio

supporte

Increasing gas fraction
Binary Mergers: Orbital Variations

- Varying orbital initial conditions:
 - Spin (pro/retrograde), varying pericenter, orbital ellipticities
- Only specially constructed initial zero angular momentum case is a slow rotator – but quite elongated
Multiple mergers: Major vs. minor

- Both sets of simulations have the same number of identical progenitors
- Multiple minor merger remnants are slower and rounder
Misalignments

- Fast rotators $\sim 5^\circ$
- Slow rotators $0^\circ - 90^\circ$

λ_{SAURO}

SAURON and simulations in good agreement

(Emsellem et al. 2007)
ATLAS3D finds kinematically decoupled cores and other non-regular rotators with high frequency in their slow rotator sample. How do these features arise? 82% Fast Rotators, 17% Slow Rotators, many with either KDC or CRC features.

(Krajnović et al. 2011)
Polar orbits yield fast rotators but also KDCs

- Polar orbits impart significant momentum out of the plane of the progenitor galaxy.
Sequential Merger KDCs

- Small-scale KDCs present in many velocity maps for sequential series
- Major mergers result in a more disrupted remnant kinematic structure
• **Multiple** mergers have KT rates of 20%–90%
• **Binary** mergers have KT <30%, with exceptions
Conclusions

- Binary mergers generically form fast rotators
- **Slow rotators** are in general not formed in dissipational binary major mergers. The exceptions depend on unique initial conditions:
 - Bulgeless galaxies that are essentially dry mergers
 - Zero initial angular momentum
 - Sequential multiple mergers can form round slow rotators

- Kinematic twists much more prevalent in polar orbits and slow rotators
Overall Trends (averaged over all projections)
Multiple Mergers

- Spiral progenitors are at least 1:10 stellar mass ratio
- Effective number of progenitors is mass-weighted
- Semi-analytic models predict that the most massive systems form by multiple mergers
- Multiple, minor mergers are a relevant scenario

(Left: Bell et al. 2003, Right: de Lucia et al. 2006)
Title
Simulation parameters

Table 1. Properties of progenitor galaxy models. M_{tot} is total mass, baryons plus dark matter; c is concentration (R_{vir}/r_s); M_{stars} is the initial stellar mass; B/D is the bulge-to-disc ratio; f_g is the initial gas mass divided by M_{tot}; $R_{1/2}$ is the initial three-dimensional stellar half-mass radius.

<table>
<thead>
<tr>
<th>Type</th>
<th>M_{tot} ($10^{10} , M_{\odot}$)</th>
<th>c</th>
<th>M_{stars} ($10^{10} , M_{\odot}$)</th>
<th>B/D</th>
<th>f_g</th>
<th>$R_{1/2}$ (kpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milky Way series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.4</td>
<td>20</td>
<td>0.036</td>
<td>0</td>
<td>0.025</td>
<td>1.16</td>
</tr>
<tr>
<td>Y</td>
<td>14.0</td>
<td>15</td>
<td>0.3</td>
<td>0</td>
<td>0.02</td>
<td>2.85</td>
</tr>
<tr>
<td>Z</td>
<td>143.0</td>
<td>12</td>
<td>5.1</td>
<td>0</td>
<td>0.004</td>
<td>4.04</td>
</tr>
<tr>
<td>Sbc series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbc</td>
<td>81.4</td>
<td>11</td>
<td>4.92</td>
<td>0.26</td>
<td>0.066</td>
<td>7.15</td>
</tr>
<tr>
<td>G series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0</td>
<td>5.0</td>
<td>14</td>
<td>0.1</td>
<td>0.02</td>
<td>0.012</td>
<td>1.84</td>
</tr>
<tr>
<td>G1</td>
<td>20.0</td>
<td>12</td>
<td>0.5</td>
<td>0.06</td>
<td>0.010</td>
<td>2.33</td>
</tr>
<tr>
<td>G2</td>
<td>51.0</td>
<td>9</td>
<td>1.5</td>
<td>0.11</td>
<td>0.009</td>
<td>2.90</td>
</tr>
<tr>
<td>G3</td>
<td>116.0</td>
<td>6</td>
<td>5.0</td>
<td>0.22</td>
<td>0.011</td>
<td>3.90</td>
</tr>
<tr>
<td>G3 gas fraction series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3gf1</td>
<td>116.0</td>
<td>6</td>
<td>3.6</td>
<td>0.32</td>
<td>0.023</td>
<td>3.49</td>
</tr>
<tr>
<td>G3gf2</td>
<td>116.0</td>
<td>6</td>
<td>2.6</td>
<td>0.52</td>
<td>0.031</td>
<td>2.89</td>
</tr>
<tr>
<td>G3gf3</td>
<td>116.0</td>
<td>6</td>
<td>1.5</td>
<td>1.34</td>
<td>0.040</td>
<td>1.77</td>
</tr>
<tr>
<td>G3gf4</td>
<td>116.0</td>
<td>6</td>
<td>5.3</td>
<td>0.20</td>
<td>0.005</td>
<td>3.96</td>
</tr>
</tbody>
</table>

(Covington 2008, Cox 2004, Cox et al. 2006)
Simulation parameters

Table 1. Progenitor galaxy properties, grouped by series.

<table>
<thead>
<tr>
<th>Type</th>
<th>M_{tot} $10^{10} M_\odot$</th>
<th>c</th>
<th>M_{baryon} $10^{10} M_\odot$</th>
<th>f_{gas}</th>
<th>B/D</th>
<th>$R_{1/2}$ (kpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Way Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.4</td>
<td>20</td>
<td>0.53</td>
<td>0.49</td>
<td>0</td>
<td>1.16</td>
</tr>
<tr>
<td>Y</td>
<td>14</td>
<td>15</td>
<td>0.76</td>
<td>0.48</td>
<td>0</td>
<td>2.85</td>
</tr>
<tr>
<td>Z</td>
<td>143</td>
<td>12</td>
<td>0.67</td>
<td>0.10</td>
<td>0</td>
<td>4.04</td>
</tr>
<tr>
<td>Sbc Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sbc</td>
<td>81.4</td>
<td>11</td>
<td>10.00</td>
<td>0.52</td>
<td>0.26</td>
<td>7.15</td>
</tr>
<tr>
<td>G Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G0</td>
<td>5</td>
<td>14</td>
<td>0.44</td>
<td>0.38</td>
<td>0.02</td>
<td>1.84</td>
</tr>
<tr>
<td>G1</td>
<td>20</td>
<td>12</td>
<td>0.70</td>
<td>0.29</td>
<td>0.06</td>
<td>2.33</td>
</tr>
<tr>
<td>G2</td>
<td>51</td>
<td>9</td>
<td>2.00</td>
<td>0.23</td>
<td>0.11</td>
<td>2.9</td>
</tr>
<tr>
<td>G3</td>
<td>116</td>
<td>6</td>
<td>6.20</td>
<td>0.20</td>
<td>0.22</td>
<td>3.9</td>
</tr>
<tr>
<td>G3 gas fraction series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3gf1</td>
<td>116</td>
<td>6</td>
<td>3.09</td>
<td>0.43</td>
<td>0.32</td>
<td>3.49</td>
</tr>
<tr>
<td>G3gf2</td>
<td>116</td>
<td>6</td>
<td>4.18</td>
<td>0.58</td>
<td>0.52</td>
<td>2.89</td>
</tr>
<tr>
<td>G3gf3</td>
<td>116</td>
<td>6</td>
<td>5.40</td>
<td>0.76</td>
<td>1.34</td>
<td>1.77</td>
</tr>
<tr>
<td>G3gf4</td>
<td>116</td>
<td>6</td>
<td>0.68</td>
<td>0.10</td>
<td>0.2</td>
<td>3.96</td>
</tr>
</tbody>
</table>

(Covington 2008, Cox 2004, Cox et al. 2006)