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AND THEIR IMPLICATIONS
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ACDM Cosmological Parameters for Bolshoi and BigBolshoi
Halo Mass Function is 10x Below Sheth-Tormen at z=10
Cluster Concentrations Agree with ACDM Predictions
Improved Halo Finding and Merger Trees

Predicted LMC/SMC Likelihood Agrees with Observations
HAM Galaxy Correlations Agree with Observations

HAM Galaxy Luminosity-Velocity Relations OK

Galaxy Velocity Function OK for Vcirc > 80 km/s

First Bolshoi and BigBolshoi data release in September 2011
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The Millennium Run
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WMAP-only Determination of os and Qwm
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WMAP+SN+Clusters Determination of ogs and Qwm
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WMAP+SN+Clusters Determination of ogs and Qwm
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250 Mpc/h. Bolshoi

The Bolshoi

simulation

ART code

250Mpc/h Box

LCDM |

os =0.82 ' Cosmological parameters are consistent with
h=0.70 _ the latest observations = |
8G particles ~ Eorce and Mass Resolution are-nearly an

lkpc/h force resolution .. order of magnitude better than Millennium-| gl
|e8 Msun/h mass res o : i

_ - Force resolution is the same as Mlllenmum II
dynamical range 262,000 7 In"a volume 16x Iarger
time-steps = 400,000 ) . .
-Halo finding is complete to Veire > 50 km/s
NASA AMES - . using both BDM and ROCKSTAR halo finders
supercomputing center = | P,
Pleiades computer

. ‘. »

13824 cores ‘ L s o . - 5788
12TB RAM %, i | j e
75TB disk storage :..__ Bolshoi and MultiDark halo Catalogs will be released |

6M cpu hrs ” September 2011 at Astro Inst Potsdam and Stanford;

|8 days wall-clock time : Merger Trees WI|| also,soon be avallable
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1000 Mpc/h- - BigBolshoi / MultiDark = 8G particles.

\ .
rJ
- -
.

Same cosmology as Bolshoi: h=0.70, 0s=0.82, n=0.95, (0m=0.27

7 kpc/h resolution, complete to Vcire > 170 km/s
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Halos and galaxies: results from the Bolshoi simulation

The Millennium Run (Springel+05) was a landmark simulation,
and it has been the basis for ~400 papers. However, it and the
new Millennium-Il and XXL were run using WMAP1 (2003)

parameters, and the Millennium-I| resolution was inadequate to

see many subhalos. The new Bolshoi simulation (Klypin,

Trujillo & Primack 2011) used the WMAPS parameters
(consistent with WMAP7) and has nearly an order of magnitude
better mass and force resolution than Millennium-1. We have
now found halos in all 180 stored timesteps, and we have
complete merger trees based on Bolshoi.

Klypin, Trujillo-Gomez, & Primack, arXiv:1002.3660 ApJ in press
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The Sheth-Tormen approximation with the same WMAPS5 parameters used for the Bolshoi
simulation very accurately agrees with abundance of halos at low redshifts, but increasingly
overpredicts bound spherical overdensity halo abundance at higher redshifts. ST agrees
well with FOF halo abundances, but FOF halos have unrealistically large masses at high z.

Klypin, Trujillo-Gomez, & Primack, arXiv: 1002.3660 ApJ in press
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Each panel shows 1/2 of the dark matter particles in cubes of 12! Mpc size. The center of each
cube is the exact position of the center of mass of the corresponding FOF halo. The effective
radius of each FOF halo in the plots is 150 — 200 A1 kpc. Circles indicate virial radii of distinct
halos and subhalos identified by the spherical overdensity algorithm BDM.

Klypin, Trujillo-Gomez, & Primack, arXiv: 1002.3660 ApJ in press
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Bolshoi Simulation Analyzed by Various Halo Finders
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Halo concentrations in the standard CDM cosmology

Francisco Prada, Anatoly A. Klypin, Antonio J. Cuesta, Juan E. Betancort-Rijo, and Joel Primack
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Halo mass—concentration relation of distinct halos at
different redshifts in the Bolshoi (open symbols) and

MultiDark (filled symbols) simulations is compared with

an analytical approximation.
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Cluster Concentrations
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Comparison of observed cluster concentrations (data points with error
bars) with the prediction of our model for median halo concentration of
cluster-size halos (full curve). Dotted lines show 10% and 90%
percentiles. Open circles show results for X-ray luminous galaxy clusters
observed with XMMNewton in the redshift range 0.1-0.3 (Ettori et al.
2010). The pentagon presents galaxy kinematic estimate for relaxed
clusters by Wojtak & Lokas (2010). The dashed curve shows prediction
by Macci o, Dutton, & van den Bosch (2008), which significantly
underestimates the concentrations of clusters.
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% Halo concentrations in the standard CDM cosmology
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Figure 5. The ratio Viqax /Vago of the maximum circular velocity Figure 6. The same as Figure 5 but for Bolshoi (open sym-
to the virial velocity as a function of mass M2qo for distinct halos bols) and MultiDark (filled symbols) simulations. Both simula-

at different redshifts for MS-I (filled symbols) and MS-II (open tions show remarkable agreement at all masses and redshifts.
symbols) simulations. Error bars are statistical uncertainties. The

MS-I and MS-II simulations agree quite well at z = 0. At higher
redshilts there are noticeable diflerences between Mo-1 and MS-11.
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GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY

PETER S. BEHROOZI, MICHAEL T. BUSHA, RISA H. WECHSLER, HAO-Y1I WU
Physics Department, Stanford University: Department of Particle and Particle Astrophyiscs, SLAC National Accelerator Laboratory; Kavli Institute for

\'\«\.\(\%(\|
e

Particle Astrophysics and Cosmology Stanford, CA 94305

ANATOLY KLYPIN
Astronomy Department, New Mexico State University, Las Cruces, NM, 88003

JOEL PRIMACK

? ( Department of Physics, University of Califormia at Santa Cruz, Santa Cruz, CA 95064

We present a new algorithm for generating merger trees and halo catalogs which explicitly ensures consis-
tency of halo properties (mass, position, velocity, radius) across timesteps. Our algorithm has demonstrated
the ability to increase both the completeness (through inserting otherwise missing halos) and purity (through
removing spurious objects) of both merger trees and halo catalogs. In addition, our method is able to robustly
measure the self-consistency of halo finders: it is the first to directly measure the uncertainties in halo positions,
halo velocities, and the halo mass function for a given halo finder based on actual cosmological simulations.
We use this algorithm to generate merger trees for two large simulations (Bolshoi and Consuelo) and evaluate
two halo finders (BDM and ROCKSTAR). We find that the ROCKSTAR halo finder self-consistently recovers the
halo mass function at the 1-2% uncertainty level, whereas BDM recovers it at the 5-10% uncertainty level. Our
code is publicly available at http://code.google.com/p/consistent-trees ; our trees and catalogs are available on
request, and they will be posted on a public website once the referee process is complete.
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HALO MERGER TREE ALGORITHM

Friday, August 12, 2011

1. Identify halo descendants using a traditional par-
ticle algorithm.

2. Gravitationally evolve the positions and velocities
of all halos at the current timestep back in time to
identify their most likely positions at the previous
timestep.

3. Based on predicted progenitor halos in step (2),
cut ties to spurious descendants.

4. Create links for halos with likely progenitors at
the previous timestep for cases in which step (2) has
identified a good match.

5. For halos in the current timestep without likely
progenitors, create a new halo at the previous
timestep with position and velocity given by the evo-
lution in step (2). Remove any such halos generated
from previous rounds if they have had no real pro-
genitors for several timesteps.

6. For halos in the previous timesteps which have
no descendants, assume that a merger occurred into
the halo exerting the strongest tidal field across it at
the previous timestep. If a halo with no descendant
is too far removed from other halos to experience a
significant tidal field, assume that it is a statistical
fluctuation and remove it from the tree and catalogs.

Behroozi et al. in prep.
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The Minlky Way has two large satellite galaxies,
the small and large Magellanic Clouds

The Bolshoi simulation + halo abundance-matching
- predicts the likelihood of this

Friday, August 12, 2011
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mE Apply the same absolute
magnitude and isolation cuts

to Bolshoi+SHAM galaxies as

to SDSS:

— Identify all objects with
absolute %M, = -20.73+0.2
and observed my < 17.6

— Probe outto z=0.15, a
volume of roughly 500 (Mpc/

NE

— leaves us with 3,200 objects.

mE Comparison of Bolshoi with
SDSS observations is in
close agreement, well within
observed statistical error

Statistics of MW bright satellites:
SDSS data vs. Bolshoi simulation

1OOOF T [T [T [T T IR
* Mrhost =-20.73+0.2 T
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# of Satellites

bars.
# of Subs | Prob (obs) | Prob (sim)

0 60% 61%

1 22% 25%

2 13% 8.1%

3 4% 3.2%

4 1% 1.4%

5 0% 0.58%
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Risa Wechsler

Similarly good agreement with SDSS for brighter satellites with
spectroscopic redshifts compared with Millennium-Il using
abundance matching -- Tolorud, Boylan-Kolchin, et al.




SMALL-SCALE STRUCTURE IN THE SDSS AND ACDM: ISOLATED ~ L, GALAXIES WITH BRIGHT SATELLITES

ERIK J. TOLLERUD', MICHAEL BOYLAN-KOLCHIN!, ELIZABETH J. BARTON!, JAMES S. BULLOCK ', CHRISTOPHER Q. TRINH’"!

Similarly good
agreement with SDSS
for brighter satellites
with spectroscopic
redshifts compared
with Millennium-lI
using abundance
matching.

Draft version March 11, 2011

We use a volume-limited spectroscopic sample of isolated galaxies in the Sloan Digital Sky Survey (SDSS)
to investigate the frequency and radial distribution of luminous (M, < —18.3) satellites like the Large Mag-
ellanic Cloud (LMC) around ~ L, Milky Way analogs and compare our results object-by-object to ACDM
predictions based on abundance matching in simulations. We show that 12% of Milky Way-like galaxies host
an LMC-like satellite within 75 kpc (projected), and 42% within 250 kpc (projected). This implies ~ 10%
have a satellite within the distance of the LMC, and ~ 40% of L, galaxies host a bright satellite within the
virialized extent of their dark matter halos. Remarkably, the simulation reproduces the observed frequency,
radial dependence, velocity distribution, and luminosity function of observed secondaries exceptionally well,
suggesting that ACDM provides an accurate reproduction of the observed Universe to galaxies as faint as
L ~ 10°Lg on ~ 50 kpc scales. When stacked, the observed projected pairwise velocity dispersion of these

satellites is ¢ ~ 160 kms™", in agreement with abundance-matching expectations for their host halo masses.
Finally, bright satellites around L, primaries are significantly redder than typical galaxies in their luminosity
range, indicating that environmental quenching is operating within galaxy-size dark matter halos that typically
contain only a single bright satellite. This redness trend is in stark contrast to the Milky Way’s LMC, which is
unusually blue even for a field galaxy. We suggest that the LMC’s discrepant color might be further evidence
that it is undergoing a triggered star-formation event upon first infall.
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Projected Galaxy Correlation Functions . .

e S s | e I function of SDSS
o < M = Dlogh < —£) galaxies vs. Bolshoi
galaxies using halo
abundance matching,
with scatter using our
stochastic abundance
matching method.
This results 1n a better
than 20% agreement
with SDSS. Top left:
correlation functinon
in three magnitude
+— bins, showing Poisson
uncertainties as thin
lines. Remaining
panels: correlation
Ry —I= function in each
luminosity bin
compared with SDSS
galaxies (points with
AN error bars: Zehavi et
al. 2010).
Trujillo-Gomez,
Klypin, Primack,
& Romanowsky
(ApJ soon)
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Projected Galaxy Correlation Functions
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Projected correlation
functions for galaxies in
different stellar mass
ranges, in SAM based on
Millennium | and Il. Black
solid and blue dashed
curves give results for
preferred model applied to
the MS and the MS-II,
respectively. Symbols with
error bars are results for
SDSS/DRY7 calculated
using the same techniques
as in Li et al. (2006). The
two simulations give
convergent results for Mx >
6X1 09 Msun. At lower mass
the MS underestimates the
correlations on small
scales.The model agrees
quite well with the SDSS at
all separations for Mx >
6X1010 Mgyn. But at smaller
masses the correlations
are overestimated
substantially, particularly
at small separations. The
authors attribute this to
the too-high os = 0.90
used in MS-I & Il.

Guo, White, et al.
2011 MNRAS
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“AC” = Adiabatic Contraction of
dark matter halos when baryons
cool & condense to halo centers,

following Blumenthal, Faber,
Flores, & Primack 1986

Trujillo-Gomez,
Klypin, Primack,
& Romanowsky

arXiv: 1005.1289
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Fig. 4.— Comparison of the observed LuminositvVelocity relation with the predictions of the ACDM model.
The =olid curve shows the median values of “!r-band luminosity vs. ecireular velocity for the model galaxy
sample. The circular velocity for each model galaxy 15 based on the peak cireular velocity of 1ts host halo

over 1ts entire historv, measured at a distance of 10 kpe from the center including the cold barvonie mass
and the standard correction due to adiabatic halo contraction. The dashed curve show results for a steeper

ll- » |
k[}

—1.34) slope of the LF. The dot-dashed curve shows predictions after adding the barvon mass but

without adiabatic contraction. Points show representative observational samples.
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Fig. 10.— Mass in cold baryons as a function of circular velocity. The solid curve shows the median values for
the ACDM model using halo abundance matching. The cold baryonic mass includes stars and cold gas and
the circular velocity is measured at 10 kpe from the center while including the effect of adiabatic contraction.
For comparison we show the individual galaxies of several galaxy samples. Intermediate mass galaxies such
as the Milky Way and M31 lie very close to our model results.
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cire

Fig. 11.— Comparison of theoretical (dot-dashed and thick solid curves) and observational (dashed curve)
circular velocity functions. The dot-dashed line shows the effect of adding the baryons (stellar and cold
gas components) to the central region of each DM halo and measuring the circular velocity at 10 kpe. The
thick solid line 18 the distribution obtained when the adiabatic contraction of the DM halos is considered.
Because of uncertainties in the AC models, realistic theoretical predictions should lie between the dot-
dashed and solid curves. Both the theory and observations are highly uncertain for rare galaxies with
Veire > 400 km s~. Two vertical dotted lines divide the VF into three domains: Veire > 400 km s~! with
large observational and theoretical uncertainties; < 80 km s=! < Vi < 400 km s~ with a reasonable
agreement, and Viire < 80 km s~1, where the theory significantly overpredicts the number of dwarfs.

Friday, August 12, 2011



First SAM galaxy results with Bolshoi - Rachel Somerville
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Bolshoil simulations - recent progress

® Anatoly Klypin has improved his BDM halofinder. It now finds the spin
parameter, concentration, shape and orientation of all halos. It also
produces catalogs for both “virial” and overdensity-200 halo definitions.
Results on all 180 stored timesteps of the Bolshoi and 50 timesteps of
the BigBolshoi/MultiDark simulation will be available using both BDM
and Peter Behroozi new phase-space halo finder ROCKSTAR.

® All catalogs are finished for BigBolshoi/MultiDark, which has the same
cosmology as Bolshoi in a volume 64x larger. It has 7 kpc/h resolution, and
is complete to Vcirc > 170 km/s (so all MWy-size halos are found).
BigBolshoi simulations can now be run and analyzed in one week; two more
are planned to get statistics for BOSS. Merger trees are coming soon.

¢ A new miniBolshoi simulation is running now. It will have a force
resolution of about 100 pc and a mass resolution of about 2x10® Mgn
and it will be complete to |5 km/s or better. We will have complete
merger histories and substructure for hundreds of MWy-size halos.

® Halo catalogs and particle data for z=0 etc. will be available in Sept 201 | at
http://www.multidark.org/MultiDark/ (You have to get an account there.)

We hope also to have complete merger trees available soon at Stanford.
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Santa Cruz Cala Workshop 201

University of California, Santa Cruz
August 8 - 12, 2011

THE BOLSHOI COSMOLOGICAL
SIMULATIONS

AND THEIR IMPLICATIONS
JOEL PRIMACK, UCSC

ACDM Cosmological Parameters for Bolshoi and BigBolshoi
Halo Mass Function is 10x Below Sheth-Tormen at z=10
Cluster Concentrations Agree with ACDM Predictions
Improved Halo Finding and Merger Trees

Predicted LMC/SMC Likelihood Agrees with Observations
HAM Galaxy Correlations Agree with Observations

HAM Galaxy Luminosity-Velocity Relations OK

Galaxy Velocity Function OK for Vcirc > 80 km/s

First Bolshoi and BigBolshoi data release in September 2011
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