Correlations of DM halo properties:
Building the Hyades Suite

Jose Oñorbe

Fulbright Postdoctoral Fellow
© University of California Irvine (jonnorbeb@uci.edu)

In collaboration with
S. Garrison-Kimmel (UCI), J. Bullock (UCI), A. Maller (CUNY), M. Rocha (UCI) and G. Bryan (CU).

August 11, 2011
2011 Santa Cruz Galaxy Workshop
Zoom-in simulations of galaxy halos spanning $M_{\text{vir}} = 0.05 - 5 \times 10^{12}M_\odot$

Identical initial conditions (MUSIC, Hahn & Abel 2011) with multiple codes: ENZO, GADGET, GASOLINE

Ultimate goal: How robust are halo (and galaxy) properties from code to code?

First step: Obtain a reliable and representative sample of halos
Hyades Simulations Suite

2 halos

same mass @ z=0

$2r_{\text{vir}}$

$z = 0$

Volume @ $z_{\text{ini}} = 250$

The initial high redshift volume can be defined by the convex hull (minimal polyhedron that englobes all particles).

Q: How big of a volume do we need to use to get no contamination?

Q: Can we pick small volumes without bias?
Hyades Simulations Suite

2 halos
same mass
@ z=0

\[z = 0 \]

Volume @ \(z_{ini} = 250 \)

Red one would be much quicker run

Q: How big of a volume do we need to use to get no contamination?

Q: Can we pick small volumes without bias?

\[2r_{vir} \]

\[5r_{vir} \]
Use $L_{\text{box}} = 50 \text{Mpc}/h$, $N_p = 512^3$, $\epsilon = 1 \text{kpc}/h$ sim to explore how halo properties depend on the vol_{hz}.

Dark Matter Halo Properties

M_{vir}, V_{max}, R_{max}, shape, λ, N_{neig}, a_{form}^{50}, N_{mergers}, subhalo, $\text{vol}_{hz} (1 \times r_{\text{vir}})$,...

Cosmology: ΛCDM WMAP7

Sample: Halos with $N_{\text{part}} > 500$

- Which halo properties contain more information? (Skibba & Maccio 2011, Jeeson-Daniel et al. 2011)
- How can we build a reliable sample with the lowest number of halos?
- How selective can we be with vol_{hz}?
Selecting a Milky Way Halo: How selective can we be?

MW Mass bin:
$[1 - 3] \times 10^{12} \ M_\odot$
No subhalos

- How is correlated vol_{hz} for a fixed mass?
- For some specific halo properties can we choose a low vol_{hz}?
Selecting a Milky Way Halo: How selective can we be?

MW Mass bin:

\([1 - 3] \times 10^{12} \, M_\odot\)

No subhalos

- How is correlated \(vol_{hz}\) for a fixed mass?
- For some specific halo properties can we choose a low \(vol_{hz}\)?

![Log \(M_{vir}\) vs Log \(vol_{hz}\): 0.326](image_url)
Selecting a Milky Way Halo: How selective can we be?

Color map and black points: full MW sample
White points: small initial volume

$\log a_{50}$ vs $\log c/a$: -0.402

$\log \lambda$ vs $\log V_{\text{max}}/V_{\text{vir}}$: -0.434

No bias with vol_{hz}
Testing reliability in Zoom-in simulations

- Using MUSIC (Hahn & Abel 2011)
- Set of dark matter zoom-in simulations.
 \[m_p = 6.88 \times 10^7 - 1.67 \times 10^4 \, M_{\odot}/h \]

Comparison between Dark-Matter full box and zoom-in runs

- Initial high-res volume: no contamination and stability of halo parameters.
- Mass and spatial resolution tests.
- Lower resolution levels sizes and resolution.
- Code differences.

Katz & White 1993, Klypin et al. 2001
Testing reliability in Zoom-in simulations

\[Vol_{hz} / Vol_{box} \text{ vs } M_{hr} / M_{tot} (\leq r_{vir}) \]

Contamination:
Any low res particles inside \(r_{vir} \)?

Log (Volume computed at high resolution)
Testing reliability in Zoom-in simulations

\[\frac{Vol_{hz}}{Vol_{box}} \text{ vs } \frac{V_{max}}{V_{max}^{\text{box}}} \]

Only runs with no contamination

\[V_{max} \text{ and most halo properties are very stable from run to run and as a function of initial volume.} \]

Some problems with ENZO because the halo moves within grid…
Testing reliability in Zoom-in simulations

$V_{ol_{hz}} / V_{ol_{box}}$ vs λ / λ_{box}

- **gadget**
- **enzo**

- $\sim 5 \times 10^{12} M_\odot$
- $\sim 1 \times 10^{12} M_\odot$
- $\sim 5 \times 10^{11} M_\odot$

Only runs with no contamination

Spin parameter less stable

Jose Oñorbe

Correlations of DM halo properties: the Hyades Suite
Conclusions: Preliminary results

- For a fixed halo mass, there is no strong bias with the initial volume (good news for zoom simulations).
- Zoom volume need to be at least $\sim 2 \times r_{\text{vir}}$ for no contamination within r_{vir}.
- Halo properties are stable for non-contaminated zooms, except for spin parameter.
- Enzo approach needs higher initial volume and more detailed information on halo history.
Thank you!

Hyades: Daughters of Atlas, nurses of Dionysus. A sisterhood of nymphs that bring rain

Would you like to try any **Hyades** nymph with your code? Please contact us!!!

(jonorbeb@uci.edu)
Some Important Parameters

WMAP 7 Cosmology.
Model: $\text{lcdm} + \text{sz} + \text{lens}$

- $\Omega_\Lambda = 0.734$, $\Omega_m = 0.266$
- $\Omega_b = 0.0449$, $h = 0.71$
- $\sigma_8 = 0.801$, $n_s = 0.963$

Full Box Parameters

- $L_{\text{box}} = 50 \text{ Mpc}/h$, $\epsilon = 1 \text{ kpc}/h$
- $N_{\text{part}} = 512^3$, $z_{\text{ini}} = 250$
- $m_{\text{dm}} = 6.88 \times 10^7 \text{ M}_{\odot}/h$

Full Box Halo Sample

- $N_{\text{part}} > 500 \rightarrow M > 3.4 \times 10^{10} \text{ M}_{\odot}/h$

"MW" Mass Bin Halo Sample

- $1 \times 10^{12} \text{ M}_{\odot} < M_{\text{halo}} < 3 \times 10^{12} \text{ M}_{\odot}$
- No subhalos
Other Figures: Full Sample

log M_{vir} vs log v_h: 0.552

log M_{vir} vs log v_h: 0.552

log v_h vs log V_{vir}: 0.026

log v_h vs log V_{max}: 0.590

log M_{vir} vs log v_h: 0.552

log M_{vir} vs log v_h: 0.552

log v_h vs log λ: 0.003

log v_h vs log V_{max}: 0.590
Other Figures: MW bin

- $\log v_{\text{halo}}$ vs $\log c/a$: 0.142
- $\log v_{\text{halo}}$ vs $\log \lambda$: 0.062
- $\log v_{\text{halo}}$ vs $\log V_{\text{max}}/V_{\text{vir}}$: −0.003
- $\log v_{\text{halo}}$ vs $\log a_{50}$: −0.160
- $\log M_{\text{vir}}$ vs N_{neigh}: −0.308
- $\log V_{\text{max}}/V_{\text{vir}}$: −0.642