On the last 10 billion years of stellar mass growth in star-forming galaxies

Sam Leitner (University of Chicago)
Advisor: Andrey Kravtsov
Santa Cruz Galaxy Workshop, August 2011
A persistent SFR main sequence

Small scatter in SFR at M_*:
- $z \approx 0$ in SDSS (e.g. Brinchmann+04)
- $z \approx 0$ in local dwarfs (Lee+11)
- $z \approx 2$ in $M_* > 10^{10}$ (e.g. Rhodighiero+11)
Main Sequence Integration

Dutton et al. (2010)
Main Sequence Integration

Dutton et al. (2010)

stellar mass fraction formed
Main Sequence Integration

stellar mass fraction formed

Dutton et al. (2010)
Main Sequence Integration

stellar mass fraction formed

Dutton et al. (2010)
Small scatter in SFR at M_*:
• $z \approx 0$ in SDSS (e.g. Brinchmann+04)
• $z \approx 0$ in local dwarfs (Lee+11)
• $z \approx 2$ in $M_* > 10^{10}$ (e.g. Rhodighiero+11)

A persistent SFR main sequence

$\sigma = 0.24 \text{dex}$
A persistent SFR main sequence

Small scatter in SFR at M_*:
- $z \approx 0$ in SDSS (e.g., Brinchmann+04)
- $z \approx 0$ in local dwarfs (Lee+11)
- $z \approx 2$ in $M_* > 10^{10}$ (e.g., Rhodighiero+11)

$\sigma = 0.24 \text{dex}$

$z \approx 0$

$z \approx 2$

Wuyts+11
Observations: normalization of SFR-M$_*$

Salim et al. 2007; Noeske et al. 2007b; Elbaz et al. 2007; Pannella et al. 2009; Daddi et al. 2007; Dunne et al. 2009; Oliver et al. 2010; Rodighiero et al. 2010a; Karim et al. 2011;
Observations: normalization of SFR-M$_*$

Salim et al. 2007; Noeske et al. 2007b; Elbaz et al. 2007; Pannella et al. 2009; Daddi et al. 2007; Dunne et al. 2009; Oliver et al. 2010; Rodighiero et al. 2010a; Karim et al. 2011;
Observations: slope $\text{SFR}/M \sim M^\beta$

- Smaller galaxies grow faster (implies downsizing)
Observations: slope $\frac{\text{SFR}}{M_*} \sim M_*^{\beta}$

smaller galaxies grow faster (implies downsizing)
Typical stellar mass growth from main sequence integration

Star formation histories

Extrapolated data

Unreliable ($\rho_{SFR} \neq \Delta \rho_*$)

Robust early growth

Stellar mass growth
Quantifying the late formation of star forming galaxies

$z_{15\%}: M(z)=0.15M_\ast(z=0)$
Quantifying the late formation of star forming galaxies

$z_{15\%} : M(z)=0.15M_*(z=0)$
Quantifying the late formation of star forming galaxies

\[z_{15\%} : M(z) = 0.15M_*(z=0) \]

Stellar mass at \(z=1 \)
Stellar mass growth from spectra

Averaged SED-based SFHs of \sim50,000 SDSS star-forming galaxies of $10^{10.5}-10^{11}M_\odot$ from the VESPA Database

star formation histories

stellar mass growth
Mimicking age uncertainty

SSPs with typical SDSS signal-to-noise are not distinguished over <0.5dex:

->Smooth by $\sigma=0.5\text{dex}$ in log-age

Tests show little bias, but resolution~1dex for non-SSPs with unknown metallicity

Ocvirk+06

Main Sequence Integration

MSI+age uncertainty
Main sequence integration and SEDs

\[\langle M* \rangle = 6 \times 10^{10} M_\odot \]
Main sequence integration and SEDs

\[\langle M_\ast \rangle = 2 \times 10^{10} M_\odot \]
Main sequence integration and SEDs

$<M_\ast> = 5 \times 10^9 M_\odot$
Main sequence integration and SEDs

\[\langle M_* \rangle = 2 \times 10^8 M_\odot \]
Consistency between SEDs and the main sequence

- $\langle M_* \rangle = 6 \times 10^{10} M_\odot$
- $\langle M_* \rangle = 2 \times 10^{10} M_\odot$
- $\langle M_* \rangle = 5 \times 10^9 M_\odot$
- $\langle M_* \rangle = 2 \times 10^8 M_\odot$
A transition at low masses?
A transition at low masses? An SED/CMD discrepancy?
Summary and Conclusions

• The main sequence of star formation can be integrated to calculate stellar mass growth in star forming galaxies back to 10-20% of current stellar masses.
• Less than 15% of stellar mass (median bulge mass) is in place in star forming galaxies of about $M_* = 1-5 \times 10^{10}$ SFGs at $z > 2$.
• SED-based star formation histories are consistent with SFR-M_* and its evolution after accounting for age uncertainties.
• Local CMD-analyzed dwarfs formed early(?) compared to SED and main sequence extrapolations.
• Details: merging, $\rho_{\text{SFR}} \neq \Delta \rho_*$, effect of scatter in SFR-M_*, other high S/N SED- and CMD-based disk observations.

arXiv:1108.0938
Merging and Scatter

\[\frac{M_*(z)}{M_0} \]

lookback time [Gyr]

\[\text{star formation rate} \quad [M_\odot \text{yr}^{-1}] \]

lookback time [Gyr]

\[\log(M/M_\odot) = 10.50 \]
The effect of age resolution on mass growth in SED-based SFHs

![Graphs showing the effect of age resolution on mass growth in SED-based SFHs.](image)