

Future of Enzo

Michael L. Norman James Bordner LCA/SDSC/UCSD

SDSC Resources "Data to Discovery"

 Host SDNAP – San Diego network access point for multiple 10 Gbs WANs

– ESNet, NSF TeraGrid, CENIC, Internet2, StarTap

- 19,000 Sq-ft, 13 MW green data center
- Host UC-wide co-location facility
 - 225 racks available for your IT gear here
 - can be integrated with SDSC resources
- Host dozens of 24x7x365 "data resources"
 - e.g., Protein Data Bank (PDB), Red Cross Safe and Well, Encyclopedia of Life,.....

SDSC Resources

- Data Oasis: high performance disk storage
 0.3 PB (2010), 2 PB (2011), 4 PB (2012), 6 PB (2013)
 PFS, NFS, disk-based archive
- Up to 3.84 Tbs machine room connectivity
- Various HPC systems
 - Triton (30 TF) A
 - Thresher (25 TF)
 - *Dash* (5 TF)
 - Trestles (100 TF)
 - Gordon (260 TF)

Aug. 2009 Feb 2010 April 2010 Jan 2011 Oct 2011 UCSD/UC resource UCOP pilot NSF resource NSF resource

NSF resource

Data Oasis: The Heart of SDSC's Data – Intensive Strategy

Trestles

New NSF TeraGrid resource in production Jan 1, 2011

Aggregate specs 10,368 cores 100 TF 20 TB RAM 150 TB DISK→2 PB

<u>Architecture</u> 324 AMD Magny-Cour nodes 32 cores/node 64 GB/node

QDR IB fat tree interconnect

SDS

SDSC UCSanDies

The Era of Data-Intensive Supercomputing Begins

Michael L. Norman Principal Investigator Interim Director, SDSC Allan Snavely Co-Principal Investigator Project Scientist

COMING SUMMER 2011

SAN DIEGO SUPERCOMPUTER CENTER

The Memory Hierarchy of a Typical HPC Cluster

The Memory Hierarchy of Gordon

Gordon

First Data-Intensive HPC system In production Fall 2011

Aggregate specs 16,384 cores 250 TF 64 TB RAM 256 TB SSD (35M IOPS) 4 PB DISK (>100 GB/sec)

Architecture 1024 Intel SandyBridge nodes 16 cores/node 64 GB/node Virtual shared memory supernodes

QDR IB 3D torus interconnect

SAN DIEGO SUPERCOMPUTER CENTER

E HPC

at the UNIVERSITY OF CALIFORNIA; SAN DIEGO

Enzo Science

First Stars

First Galaxies

SMBH accretion

Cluster radio cavities

Lyman alpha forest

Supersonic turbulence

Star formation

SAN DIEGO SUPERCOMPUTER CENTER

collaborative sharing and development

SAN DIEGO SUPERCOMPUTER CENTER

Enzo V2.0

radiative transfer

lonization

magnetic fields

Pop III Reionization Wise et al.

Current capabilities: AMR vs treecode

Dark matter substructure (PKDGRAV2)

First galaxies (ENZO)

Figure 1: Current capabilities of cosmological simulations. **Left**: EnzoAMR simulation of a primeval galaxy at z=7.35. From [86] **Right**: PKDGRAV2 simulation of dark matter substructure of a Milky Way size halo at z=0. From [66].

- ENZO's AMR infrastructure limits scalability to O(10⁴) cores
- We are developing a new, extremely scalable AMR infrastructure called *Cello*
 - <u>http://lca.ucsd.edu/projects/cello</u>
- ENZO-P will be implemented on top of Cello to scale to 10⁶⁻⁸ cores

Core ideas

- Take the best fast N-body data structure (hashed KD-tree) and "condition" it for higher order-accurate fluid solvers
- Flexible, dynamic mapping of hierarchical tree data structure to the hierarchical parallel architecture
 - Object oriented design
- Build on best available parallel middleware for faulttolerant, dynamically scheduled concurrent objects (Charm++)
- Easy ports to MPI, UPC, OpenMP,

Cello AMR approach

- Based on octrees rather than SAMR for scalability
 - octree AMR has scaled to > 200K cores
 - mesh data associated with leaf nodes only
- Enhancements to address other issues
 - patch coalescing to reduce AMR overhead
 - targeted refinement for deep AMR problems

3 ×

DQA

Cello AMR Enhancement 1: Patch coalescing

イロト イヨト イヨト イヨト

E

- Coalesce patches into larger one when possible
- Split a patch into smaller ones when necessary
- Maintain task size control using "blocks"

Parameters Design Features Conclusions

Cello AMR Enhancement 1: Patch coalescing

- Assume you want to refine on a circle
- quadtree refinement has 18517 patches
- coalescing patches reduces to 789 patches

イロト イロト イヨト イヨト

E

Cello AMR Enhancement 1: Patch coalescing

- Assume you want to refine on a circle
- quadtree refinement has 18517 patches
- coalescing patches reduces to 789 patches

《曰》《曰》《臣》《臣》

臣

Parameters Design Features Conclusions

Cello AMR Enhancement 1: Patch coalescing

- Assume you want to refine on a circle
- quadtree refinement has 18517 patches
- coalescing patches reduces to 789 patches

イロト イポト イヨト イヨト

1

Cello AMR Enhancement 2: Targeted refinement

- Refine by r = 4 instead of r = 2
- Refinement is more localized
- Can restore r = 2 jumps by "backfilling" levels
- Backfill patch locations known implicitly—nominal storage

~ Q (?

Cello AMR Enhancement 2: Targeted refinement

- Assume you want to refine on point sources
- quadtree refinement
 with r = 2 has 2137
 patches
- targeted refinement
 with r = 4 has 158
 patches

《曰》《卽》《臣》《臣》

æ

Parameters Design Features Conclusions

Cello AMR Enhancement 2: Targeted refinement

- Assume you want to refine on point sources
- quadtree refinement with r = 2 has 2137 patches
- targeted refinement with r = 4 has 158 patches

イロト (四) (王) (王)

臣

Cello AMR Enhancement 2: Targeted refinement

- Assume you want to refine on point sources
- quadtree refinement with r = 2 has 2137 patches
- targeted refinement with r = 4 has 158 patches

《曰》《曰》 《臣》 《臣》 三臣

Cello Mesh data structure

Core Mesh classes

Mesh

æ.

DQC

イロト イヨト イヨト イヨト

• Decouple mesh refinement from data distribution

- in Enzo, grid = parallel task
- in Cello, $Patch \supseteq Block = parallel task$
- Block size can be optimized independently of Patch size
 - target specialized computational kernels
 - increased parallelism
 - improved load balancing
 - reduced memory fragmentation
- "Unigrid" when possible; AMR when necessary
 - leverage unigrid performance and scalability
 - Patches encapsulate parallel unigrid subproblems
 - O(1) metadata for full unigrid problem (O(P) for Enzo)

イロト イポト イミト イミト ニヨー

DQC

Cello Mesh data structure

Mesh related classes

æ.

-∢ ≞ →

⊇ >

DQC

Cello Mesh data structure Mesh related classes

- Mesh: full AMR hierarchy
- Patch: region of uniform resolution
 - Cello unigrid problem degenerates to single Patch
- Block: basic distributed data unit / parallel task
 - MPI: e.g. one Block per process in Cartesian topology
 - CHARM++: one Block per 3D "chare array"
 - GPU / OMP / UPC support planned
- Layout: specifies how to distribute Blocks in a Patch
 - Block size, process range, neighbor pointers, etc.
 - hierarchical parallelism through multiple Layouts
- Block data: Field, Particles, etc.
- Tree, Node: bare-bones octree data structure
 - Nodes are only objects replicated across machine
 - small nodes: \leq 24 bytes (> 1500 bytes/grid for Enzo)

< 臣 > < 臣 >

1) Q (?

• fewer nodes: e.g. 1 instead of P for unigrid case

Cello Status

Software design completed

200 pages of design documents

- ~20,000 lines of code implemented
- PPM hydro code for uniform grid with Charm++ parallel objects initial prototype
- Next up: AMR
- Seeking funding and potential users