

Toward Realistic 3D Core Collapse Supernova Modeling: Near-Term Expectations and Longer-Term Plans and Challenges

12/17/10

Anthony Mezzacappa (ORNL), Future of AstroComputing

Core Collapse Supernova Paradigm

How is the supernova shock wave revived?

The most fundamental question in supernova theory

- Gravity
- Neutrino Heating
- Convection
- Shock Instability
- Nuclear Burning
- Rotation
- Magnetic Fields

*New Ingredient

Stationary Accretion Shock Instability (SASI)

Blondin, Mezzacappa, & DeMarino, Ap.J. 584, 971 (2003)

Shock wave unstable to non-radial perturbations.

SASI has *axisymmetric and nonaxisymmetric* modes that are both linearly unstable!

- Blondin and Mezzacappa, Ap.J. 642, 401 (2006)
- Blondin and Shaw, Ap.J. 656, 366 (2007)
- Blondin and Mezzacappa, Nature 445, 58 (2007)

- Decreases advection velocity in gain region.
- Increases time in the gain region.
- Moves shock toward silicon/oxygen layers.
- Generates convection.
 - \Rightarrow Marek and Janka, Ap.J. 694, 664 (2009)

The Heart of the Matter

Neutrino heating depends on neutrino luminosities, spectra, and angular distributions.

Neutrino heating is sensitive to all three (most sensitive to neutrino spectra). ⇒ Must compute neutrino distributions.

$$f(t,r,\theta,\phi,E,\theta_p,\phi_p)$$

Multifrequency Multiangle

$$E_R(t,r,\theta,\phi,E) = \int d\theta_p \, d\phi_p \, f$$

$$E_{R}(t,r,\theta,\phi) = \int dE \, d\theta_{p} \, d\phi_{p} \, f$$

Multifrequency (Parameterize Isotropy)

Gray (Parameterize Isotropy and Spectra)

Completed: Spherical Models with Boltzmann Transport

Newtonian

Mezzacappa et al., PRL, 86, 1935 (2001)

General Relativistic

Liebendoerfer et al., PRD, 63, 103004 (2001)

The simulation of core collapse supernovae with fully general relativistic, multi-angle, multi-frequency, Boltzmann neutrino transport has been achieved for spherically symmetric cases.

⇒ What's missing?

- Better weak interaction physics?
- Better EOS?
- Neutrino mixing?
- Multi-D effects.

Agile-BOLTZTRAN

Ongoing 2D Multi-Physics Supernova Models

Simulation Building Blocks

- "RbR-Plus" MGFLD Neutrino Transport
 - O(v/c), GR time dilation and redshift, GR aberration (in flux limiter)
- 2D PPM Hydrodynamics
 - *GR time dilation, effective gravitational potential, adaptive radial grid*
- ➡ Lattimer-Swesty EOS
 - 180 MeV (nuclear compressibility), 29.3 MeV (symmetry energy)
- Nuclear (Alpha) Network
 14 alpha nuclei between helium and zinc
- 2D Effective Gravitational Potential
 Marek et al. A&A, 445, 273 (2006)
- Neutrino Emissivities/Opacities
 - "Standard" + Elastic Scattering on Nucleons + Nucleon–Nucleon Bremsstrahlung

- "Ray-by-Ray-Plus" Approximation
- Solve set of 1D problems.
- Ignore differences in lateral fluxes across 1D problems.
 - Buras et al. A&A, 447, 1049 (2003)

Gravitational Wave Signal (S15 LS EoS 256x256)

Prediction from parameterized model. Murphy, Ott, and Burrows, *Ap J*. **707**, 1173 (2009)

Yakunin et al., Class. Quant. Grav., 27, 194005 (2010)

Ongoing 3D Multi-Physics Simulations

Simulation Building Blocks

- "RbR-Plus" MGFLD Neutrino Transport
 O(v/c), GR time dilation and redshift, GR aberration (in flux limiter)
- **3** *J PPM Hydrodynamics*
 - *GR time dilation, effective gravitational potential, adaptive radial grid*
- Lattimer-Swesty EOS
 - 180 MeV (nuclear compressibility), 29.3 MeV (symmetry energy)
- Suclear (Alpha) Network
- 3D Effective Gravitational Potential
 Marek et al. A&A, 445, 273 (2006)
- Neutrino Emissivities/Opacities
 - "Standard" + Elastic Scattering on Nucleons + Nucleon–Nucleon Bremsstrahlung

Bruenn et al., Journ. Phys. Conf. Ser., 180 012018 (2009)

Resolution

512 X 128 X 256 (recently launched) $\Rightarrow \sim 33,000$ processors

```
~ 200 days/simulation
~ 80M proc-hrs/simulation
```


Bruenn et al., Journ. Phys. Conf. Ser. 180, 012018 (2009)

PREVIEWS OF COMING DISTRACTIONS

3D Models: Path Forward										
Code	Neutrino Transport Approach	GR	Network	Platform	Time Frame	Target				
CHIMERA	RbR MGFLD	Approximate	Alpha, Full	2 PF	2010	CCSNe				
GenASiS	MGVET	BSSN	Alpha, Full	2-20 PF	2012	CCSNe, Hypernovae				
GenASiS	Boltzmann	BSSN	Alpha, Full	10 EF	> 2020	CCSNe, Hypernovae				

SCIENCE TO SOLVERS MAPPING

The Need for Exascale Resources

— Dominated by preconditioning of dense blocks.

FLOPS ~ $N_t N_s N_i f N_m^2 \sim 3.5 \times 10^{22} f$

 N_t = number of time steps ~ 1×10⁶ N_s = number of spatial zones ~ 512×512×512 N_i = number of iterations per time step ~ 10 N_m = number of neutrino momentum zones $f \in [1, N_m] = [1, 5120]$

$$N_m = N_v \times N_E \times N_p \times N_a$$

 $N_v = 4$ N_E = number of neutrino energy groups ~ 20 N_p = number of neutrino polar direction angles ~ 8 N_a = number of neutrino azimuthal direction angles ~ 8

Algorithms critical!

Runtime: ~ (4f) days per run on a 1 EF machine (at 10% of peak).

The Need for Exascale Resources

-Dominated by preconditioning of dense blocks.

FLOPS ~ $N_t N_s N_i f N_m^2$ ~ 3.4 × 10¹⁹ f

 N_t = number of time steps ~ 1×10⁶ N_s = number of spatial zones ~ 512×512×512 N_i = number of iterations per time step ~ 10 N_m = number of neutrino momentum zones $f \in [1, N_m] = [1, 160]$

$$N_m = N_v \times N_E$$

 $N_v = 4 \times 2$ N_E = number of neutrino energy groups ~ 20

Runtime: ~ fhours per run on a 1 EF machine (at 10% of peak).

Half Empty:

The proposed exaflop platform will likely have 32-64 PB of memory.

- \Rightarrow Memory/core will be greatly reduced.
 - Problematic for multi-physics applications.
 - Will significantly stress current approaches.

E.G.: Memory footprint for Jacobian-based Newton-Krylov approaches to solving 3D neutrino Boltzmann equations will have a footprint ~30 PB *at moderate resolution*.

 \Rightarrow Must run on a significant fraction of the machine.

Krylov methods?
Approaches to AMR?
Programming models?
Collective parallel I/O?
Fault tolerance?
...

Half Full:

Multi-physics applications offer the dimensionality and richness of physics to make effective use of heterogeneous processors.

Other Issues

Scientific Workflows: A Different Challenge

In "production mode," managing Workflows has become a paramount issue.

 \Rightarrow Ideally, we would like to automate these workflows.

- ⇒ Data Management and Analysis
- \Rightarrow Networking
- \Rightarrow Visualization

Code	# Variables	Resolution	# Dumps	Data Output	Runtime	Machine
CHIMERA 1.0	~ 200	576X96X192	3000	~50 TB	~ 3 Months	2 PF
CHIMERA 2.0	~ 350	576X96X192	3000	~100 TB	~ 3 Months	20 PF
GenASiS	~ 5000	512X512X512	3000	~30 PB	?	10 EF

Summary and Outlook

- Recent 2D results very promising.
- 3D results in the RbR approximation forthcoming.
- Efforts underway to perform fully 3D (4D including neutrino energy) simulations.
- Robust algorithms have been developed, but these will be challenged by architectural trends.
- Multi-physics applications will be well positioned to exploit heterogeneous processing.

Collaborators

Budiardja Cardall Chertkow Endeve Hix Lentz Messer Mezzacappa Parete-Koon

Applied Math/CS Collaborators

- Closures, Solvers: Hauck, D'Azevedo
- Data Management: Klasky and collaborators
- Networking: Beck, Rao, and collaborators
- Visualization: Ahern, Ma, Meredith, Pugmire, Toedte
- Cray Center of Excellence: Levesque, Wichmann

Fau

Bruenn

Marronetti

Tsatsin

Yakunin

NC STATE UNIVERSITY

Blondin Mauney

Fuller +

Funded by

U.S. DEPARTMENT OF ENERGY

