Advancing Galaxy Formation Modeling

Andrew Benson

California Institute of Technology

Advancing Galaxy Formation Codes

Introduction | Models | Design | Modularity | Components | Evolution | Pros/Cons | Physics | Summary

• Why a new code?

Adding in now features (a g self consistent

GALACTICUS

ew be

sites.google.com/site/galacticusmodel

isolating assumptions so that they don't have consequences throughout the code.

• Ho

Design Features

- Open source (compiles with GNU compilers)
- Modular design
 - Each function can have multiple implementations, selected by input parameter.
 - "Node" can have arbitrary number of components (e.g. DM halo, disk, spheroid), all with multiple implementations
- Combination of smooth (ODE) evolution and instantaneous events (e.g. mergers)

Design Features

Introduction | Models | Design | Modularity | Components | Evolution | Pros/Cons | Physics | Summary

Well documented

Provide the data of the data

– MPI (soon...)

- Currently simple, but allows for expansion

External Tools

- GNU Scientific Library/FGSL
 - ODE solver; integration; other numerics
- Fox library
 - Read/write XML files
- FSPS
 - Population synthesis
- Cloudy
 - Cooling times

Modularity

- New implementation of function easily added:
 - Write a module containing the function
 - Add directives indicating that this function is for, e.g., disk star formation timescale calculations
 - Recompile build system automatically finds this new module and works out how to compile it into the code
- Modules are self-contained and independent
- Self-initializing and recursive

Node Components

- Component could be, e.g. disk (exponential)
- Stores various types of data:
 - Properties evolved within ODE system
 - Data internal data, not evolved
 - Histories records of past/future history (e.g. star formation history)
- Allows for multiple components of each type

Node Components

- Defining a component:
 - Set of ODEs giving rates of change of properties (can access properties of other components/nodes as needed)
 - Responses to events (merging, becoming satellite etc.)
 - Specify properties to be output

Node Evolution

Introduction | Models | Design | Modularity | Components | Evolutio

- Repleted by establishing and stables above abov
 - Cannot evolve if have children
 - Can't evolve beyond their satellites
 - Limit on timestep
 - Arbitrary other factors can be included

Node Evolution

- All component properties fed into ODE solver
- Evaluate derivatives evolve forward in time
- No need for fixed timesteps or analytic solutions
 - Makes implementing, for example, Kennicutt-Schmidt law trivial (just add new star formation timescale function)
- Evolution can be interrupted as needed (e.g. when galaxy merges)

Node Evolution

- Component creation:
 - Nodes begin with only basic component (mass, time)
 - If accretion from IGM occurs, stop and create a hot halo component
 - If cooling occurs, stop and create a disk component
 - Components can be destroyed as needed also

Advantages

- Modularity makes it highly flexible:
 - Add new star formation rule in 5 minutes
 - Change in cooling model confined to few modules which compute cooling time and rate
- Unified ODE solver makes new features simple:
 - Timestepping handled automatically
 - No need for analytic solutions
 - Implemented noninstantaneous recycling in one afternoon rather than two months!

Disadvantages

Introduction | Models | Design | Modularity | Components | Evolution | Pros/Cons | Physics | Summary

Slower

- Wasn't designed for speed, but for simplicity

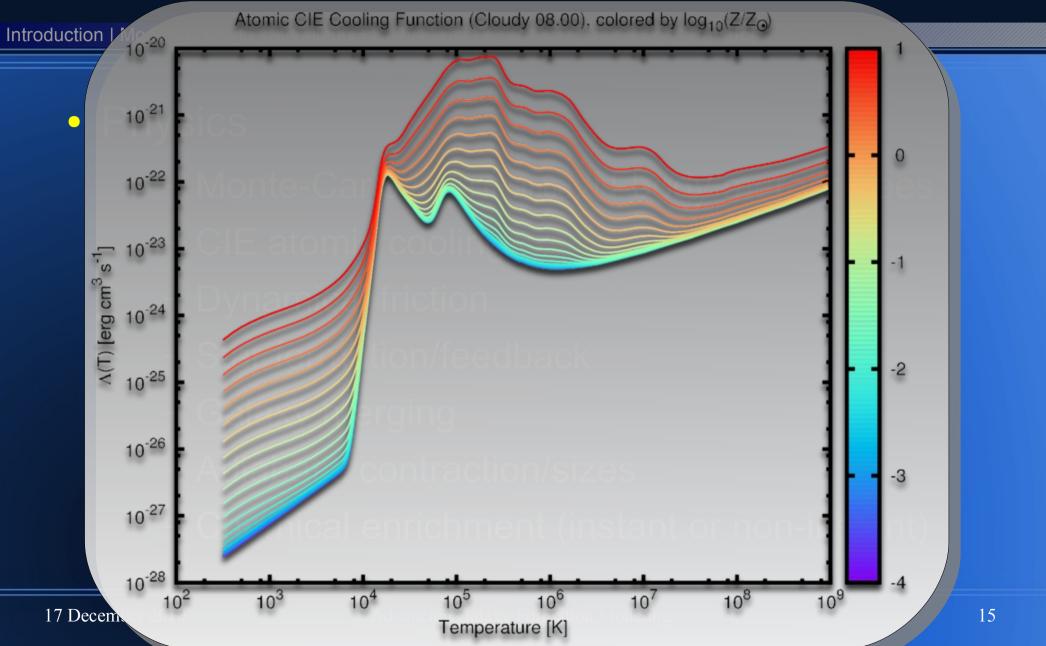
H₂-based star formation

Resolved disks

- Missing features (plan Black hole merging timescales/kicks
 - Ram pressure/tidal
 - Self-consistent reiol
 Compton/H₂ cooling
 Deterministic spins/concentrations
 - Satellite orbits/disk heating
 - etc.

Current Feature List

Introduction | Models | Design | Modularity | Components | Evolution | Pros/Cons | Physics | Summary


- Components
 - DM profile [isothermal/ NFW]
 - Hot halo
 - Disk [exponential]
 - Spheroid
 [Hernquist]
 - Black holes

17 December 2010

Advancing Ga

Tracks mass and spin. Spin from mergers and accretion. Accretion spin-up using Benson & Babul formula Jet power from Benson & Babul also.

Current Feature List

Current Feature List

- Physics (cont.):
 - Disk instabilities
 - Black hole merging
 - AGN feedback
 - Stellar population synthesis (with arbitrary IMF)

Summary

Introduction | Models | Design | Modularity | Components | Evolution | Pros/Cons | Physics | Summary

sites.google.com/site/galacticusmodel