

Light-shows from Supermassive Black Hole Mergers

Pablo Laguna Center for Relativistic Astrophysics Georgia Tech

Collaborators:

Tanja Bode, Tamara Bogdanovic (Maryland), Roland Haas, James Healy, Deirdre Shoemaker

The Driving Force behind Numerical Relativity

Numerical waveforms are essential on assisting to predict what to expect

The Driving Force behind Numerical Relativity

Numerical waveforms are essential on assisting to predict what to expect

The Driving Force behind Numerical Relativity

Numerical waveforms are essential on assisting to predict what to expect

Template Banks & Matches

BBH Parameter Space:

- Masses
- Spins
- Eccentricity
- Orientation
- Time of arrival
- Phase at arrival

Dirty Laundry & Needs:

- Efficiency of codes
- Accuracy needs not known
- Limited parameter exploration
- On demand simulations

Synergy of EM & GW signatures in SMBH Mergers

SMBH binaries are one of the prime sources for LISA.

GW Data:

- Masses, spins (initial and final),
- Luminosity Distance
- Merger rates
- Mapping the spacetime

EM + GW Data:

- Improves sky localization
- Identify host galaxy morphology
- Tests of galaxy merger scenarios
- Improves GW detection rates
- Luminosity distance (GWs) and redshift (EM) yield cosmological standard sirens.
- Understanding BH accretion physics.
- Test ground for GR (e.g. graviton's speed)

Supermassive BH Mergers

Mergers of galaxies will very often lead to SMBH coalescences.

- Galactic mergers scales: 10² kpc scales
- BH binaries scales: few pc when binding and AU near coalescence
- How do BHs reach the gravitational wave inspiral regime?
- What is the role of the environment?

Tremendous computational modeling grand challenge! 10⁵ pc 10⁻⁵ pc

SMBBH History in Gas-rich Environments

$r_{sep} \sim 10$ kpc:

- Galactic cores drag the BHs with them.
- Each BH (e.g. 10^{6} M_{sun}) is surrounded by a stellar and gaseous disk (10^{8} M_{sun}).
- As disks merge, gas-dynamical friction sinks the BHs to the center to form a pair.

Colpi, Callegeri, Dotti & Mayer

SMBBH History in Gas-rich Environments

r_{sep} ~ 10 pc:

When the mass within their separation is less than the pair mass, the BHs bind and form a Keplerian binary.

r_{sep} ~ 1 pc:

- 3-body interactions with the surrounding stars help shrinking the binary.
- Shrinking stalls when reservoir of stars is depleted (Last parsec problem).

Colpi, Callegeri, Dotti & Mayer

SMBBH History in Gas-rich Environments

$r_{sep} \sim 0.01 pc$:

- Disk assisted binary shrinkage
- Requires thin circumbinary disks.
- More effective for un-equal mass binaries.
- Maybe a retrograde disk is more effective.

$r_{sep} < 10^{-4} \text{ pc}$:

- Gravitational radiation dominates the dynamics.
- The most luminous sources of gravitational radiation in the universe (~ 10⁵⁷ erg s⁻¹)
- An opportunity for variable or transient EM signal (multi-messenger astrophysics).

Relativistic mergers of SBHs

Surrounded by test particles

(van Meter+ 09)

Surrounded by matter (Bode+ 10; Farris+ 10)

Surrounded by EM fields (Palenzuela+ 09, 10; Mösta+ 10)

What is the environment in the vicinity of BBHs?

- Not well know at scales < 0.01 pc
- Two physically motivated scenarios depending on the balance of heating and cooling:
- Radiatively Inefficient Hot Gas: If cooling is inefficient, the BBH is immersed in a pressure supported, geometrically thick torus or cloud. kT ~10-100 eV (UV, optical)
- Circumbinary Disk: If cooling is relatively efficient, the gas settles into a rotationally supported geometrically accretion disk around the BBH. kT ~ 0.1–1 MeV (hard Xray, γ -ray)
- Chaotic Central Accretion: sequence of randomly oriented disks.

We focus first on the hot gas cloud

$$M = 10^{7} M_{\odot}$$

$$d = 8 M = 10^{-5} M_{7} \text{ pc}$$

$$\rho_{c} = 7 \times 10^{-12} \text{ g cm}^{-3} M_{7}^{-2}$$

$$T_{p} = 10^{12} \text{ K}$$

$$T_{e} = 10^{10} \text{ K}$$

Computational Infrastructure (Maya):

- •BSSN form of Einstein Eqs
- 4th order accurate
- CACTUS (parallelization)
- •CARPET (AMR, 9 refinement levels)
- •WHISKY (Hydro)
- Horizon trackers
- •BH spin from killing vectors
- •No AGN feedback, no magnetic fields, no radiative transfer.

Dirty Laundry & Need:

- ~ 75% is spent on the Hydro
- Bottle neck, resolving BHs
- Hydro + BH AMR

Gas Density

Bremsstrahlung luminosity

EM & GW emission

EM variability is due to relativistic beaming and boosting (Bode+ 09)

Dependence on Temperature

Dependence on Mass Ratios and Spins

Effects of unequal mass ratio and spin orientations

Effects of unequal mass ratio and spin orientations

Effects of unequal mass ratio and spin orientations

Preview: Merger of SBHs in a circumbinary disk

- Late inspiral and merger (BH separation 8M)
- Equal and unequal mass, spinning BHs
- Initially, orbital plane in the plane of the disk
- Pressure supported disk, h/r = 0.2, inner edge at 16M
- Not modeled: AGN feedback, radiative cooling, magnetic fields, viscosity.

$$\rho(R,\theta) = \rho_c \exp\left(-\frac{\cos^2 \theta}{2(h/r)^2 \sin^2 \theta}\right)$$
$$p(R,\theta) = \frac{MR(h/r)^2 \sin^2 \theta}{(R-4M)^2} \rho(R,\theta)$$

q	spins
1	11
1/2	11
1/2	N/

BBH + Circumbinary Disk

Bode, Bogdanovic, Haas, Healy, Laguna, Shoemaker, in preparation

BBH + Circumbinary Disk

Bode, Bogdanovic, Haas, Healy, Laguna, Shoemaker, in preparation

BBH + Circumbinary Disk

Bode, Bogdanovic, Haas, Healy, Laguna, Shoemaker, in preparation

Luminosity

Conclusions

- Hot accretion flow:
 - Correlated EM+GW chirp-like oscillations.
 - Luminosity drop-off a robust signature.
- Circumbinary disk:
 - Binary promptly clears the gas from the central region, more pronounced for generic binary configurations.
 - Comparable luminosity from the gap region between BBH and single BH case.
- Current (lack of) observational evidence equally favors *circumbinary disk*.

Conclusions

- We carried out fully general relativistic simulations of generic SMBH binary mergers in different astrophysical environments.
- In the absence of information regarding the environment surrounding the binary, our best option is to explore a range of scenarios and look for characteristic features (*flares, variability*).
- These are prototype simulations. Follow-up work is needed to explore more astrophysically plausible configurations (*MHD, cooling, radiative transfer*)
- The marriage between GR and Hydro needs to be improved (e.g. AMR, implicit-explicit time-stepping)