

Magnetic Fields and Asymmetric Core Collapse Supernovae

Sean M. Couch Flash Center, University of Chicago CCSN Observations indicate asymmetry

Basic Physics of CCSN & the Neutrino Mechanism

@ 1D, 2D, & 3D simulations

Magnetorotational CCSN

Can MR-CCSN fit the observations?

Basics of Magnetohydrodynamics

MHD in CCSN

So, Who cares?

- Real stars rotate and are magnetic!
 The initial conditions are still uncertain...
 Could have dramatic effect on explosion dynamics
 May be critical to explaining observations
- Magnetars, Pulsars, GRBs, oh My!

SN 1987A

Cas A

Cas A

Delaney et al.

SN Polarization

ALL core-collapse SNe are polarized

- Higher asymmetries in the cores of explosions
- Often show a "dominant axis" in Q/U plane indicates an elongated explosion
- Loops in Q/U plane indicate non-axisymmetry

Type IIP Polanization

$SN_{\epsilon} 2004dj$

Leonard et al. 2006

What Do the Observations Tell Us?

- Massive stars explode all the time, with energies around 10⁵¹ erg!
- They are NOT spherically-symmetric
- They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.
- They leave remnants that often have high kick velocities and strong magnetic fields.
- Some CCSNe are associated with GRBs.
- Mixing & overturn commonly indicated.

Core Collapse Basics

$$e^- + p^+ \to n + \nu_e$$

e⁻ degeneracy pressure fails

Janka (2007)

Core Collapse Basics

$$\rho_0 \sim 10^{14} \text{ g cm}^{-3}$$

Janka (2007)

Core Collapse Basics

Shen 98: Solid L-S 220: Dotted

Wednesday, July 27, 2011

What's the big deal?

- Neutrino radiation hydrodynamics is hard!
- Highly non-local problem.
- Must have closure scheme for radiation transport (or Boltzmann) moment equations.
- Common closure schemes: Flux-limited diffusion, Ray-by-ray spectral transport, full multi-angle spectral transport, etc.

An Explosion in 2D:

"Ray-by-ray plus" method (Buras et al. 2006)
variable Eddington factor technique
rather under-energetic explosion only for 11.2 M_{sun} star.

Buras, Marek, Janka, Rammp

Nature isn't two dimensional...

Murphy & Burrows (2008) and Nordhaus et al. (2010) found that explosions are more easily obtained in higher dimension.

Parameterized neutrino heating & cooling with approximate deleptonization scheme.

Entropy

Nordhaus, Burrows, Bell, Almgren, Chupa

Nordhaus, Burrows, Bell, Almgren, Chupa

Some Salient Features of the Neutrino Mechanism

- Sophisticated 1D simulations don't give explosions for progenitors bigger than about 10 M_{sun}.
- 2D simulations only give explosions for 11.2
 M_{sun} progenitors.
- Multidimensional effects (convection, SASI) critical to success.

Easier to get explosion in 3D!

Massive stars explode all the time, with energies around 10⁵¹ erg!

They are NOT spherically-symmetric

They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.

They leave remnants that often have high kick velocities and strong magnetic fields.

Some CCSNe are associated with GRBs.

- X Massive stars explode all the time, with energies around 10⁵¹ erg!
 - They are NOT spherically-symmetric
 - They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.
 - They leave remnants that often have high kick velocities and strong magnetic fields.
 - Some CCSNe are associated with GRBs.
 - Mixing & overturn commonly indicated.

X Massive stars explode all the time, with energies around 10⁵¹ erg!

They are NOT spherically-symmetric

They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.

They leave remnants that often have high kick velocities and strong magnetic fields.

Some CCSNe are associated with GRBs.

X Massive stars explode all the time, with energies around 10⁵¹ erg!

V They are NOT spherically-symmetric

Y Solution They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.

They leave remnants that often have high kick velocities and strong magnetic fields.

Some CCSNe are associated with GRBs.

X Massive stars explode all the time, with energies around 10⁵¹ erg!

V
They are NOT spherically-symmetric

X Ø They often show general `bi-polarity' with significant non-axisymmetry and time-dependent polarization.

Y They leave remnants that often have high kick velocities and strong magnetic fields.

Some CCSNe are associated with GRBs.

X Massive stars explode all the time, with energies around 10⁵¹ erg!

V
They are NOT spherically-symmetric

Y Solution They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.

They leave remnants that often have high kick velocities and strong magnetic fields.

X Some CCSNe are associated with GRBs.

X Massive stars explode all the time, with energies around 10⁵¹ erg!

V
They are NOT spherically-symmetric

Y Solution They often show general 'bi-polarity' with significant non-axisymmetry and time-dependent polarization.

They leave remnants that often have high kick velocities and strong magnetic fields.

X Some CCSNe are associated with GRBs.

Magnetorotational SNe

- All stars rotate and have magnetic fields!
- Magnetic fields can tap the energy in differential rotation to power outflows
- Some progenitors may rotate fast enough to power a magnetorotational explosion

$E_{\rm rot,PNS} \approx \frac{1}{2} I_{\rm PNS} \Omega_{\rm PNS}^2$ $\approx 9 \times 10^{50} {\rm ergs} \left(\frac{M_{\rm PNS}}{1.5 \ M_{\odot}}\right) \left(\frac{\Omega_{\rm PNS}}{250 \ {\rm s}^{-1}}\right)^2 \left(\frac{R_{\rm PNS}}{50 \ {\rm km}}\right)^2$

$E_{\rm rot,PNS} \approx \frac{1}{2} I_{\rm PNS} \Omega_{\rm PNS}^2$ $\approx 9 \times 10^{50} {\rm ergs} \left(\frac{M_{\rm PNS}}{1.5 \ M_{\odot}}\right) \left(\frac{\Omega_{\rm PNS}}{250 \ {\rm s}^{-1}}\right)^2 \left(\frac{R_{\rm PNS}}{50 \ {\rm km}}\right)^2$

Rapid rotation, but in line with PNS rotation speeds from Burrows et al. (2007).

Not all of this energy will be available to drive an explosion!

Magnetorotational SNe

Burrows et al. 2007

Magnetorotational SNe

- Rapid rotation required for MHD jetdriven explosion
- MHD & rotation may still be important in slower rotators
- SN progenitor core rotation and Bfield not well defined
- MRI not resolved in simulations
Magnetorotational SNe

Elongated explosions

Non-axisymmetries via instabilities

- High-velocity nickel clumps
- Gomplex, large-scale structures
- Mechanism for pulsar kicks
- Continuum to GRBs with higher rotation

Can Bipolar Explosions Explain Observations?

Jet-driven Type IIP SNe

SMC, Wheeler, Milosavljevič 2009, ApJ, 696, 953

15 M_o Red Supergiant progenitor star
FLASH hydrodynamics code
Jets introduced at inner boundary
Four physically-motivated jet models
Evolved to 500,000 seconds

Dynamic Range

- $\odot \Delta_r \sim 10^6$ cm out to 10^{15} cm
- 2D spherical geom.
- 7 refinement levels, regridding algorithm

Stage	t_i [s]	t_f [s]	$r_{ m in} \ [m cm]$	$r_{\rm out} \ [{\rm cm}]$	$N_{r,0}$	$\Delta r_{\min} \ [\mathrm{cm}]$
0:	0	5	3.82×10^8	3.2×10^{10}	192	$2.6 imes 10^6$
1:	5	25	3.82×10^8	7.5×10^{10}	192	6.1×10^6
2:	25	100	1.0×10^9	2.5×10^{11}	192	$2.0 imes 10^7$
3:	100	300	2.0×10^9	$9.0 imes 10^{11}$	192	$7.3 imes 10^7$
4:	300	1×10^3	4.0×10^9	$3.0 imes 10^{12}$	320	1.5×10^8
5:	1×10^3	3×10^3	$1.0 imes 10^{10}$	$6.0 imes 10^{12}$	320	2.9×10^8
6:	3×10^3	1×10^4	$2.0 imes 10^{10}$	$2.0 imes 10^{13}$	352	8.9×10^8
7:	1×10^4	$3 imes 10^4$	$5.0 imes 10^{10}$	$6.0 imes 10^{13}$	352	2.7×10^9
8:	$3 imes 10^4$	1×10^5	$1.0 imes 10^{11}$	2.0×10^{14}	384	8.1×10^9
9:	1×10^5	2×10^5	2.0×10^{11}	$4.0 imes 10^{14}$	384	1.6×10^{10}
10:	2×10^5	5×10^5	5.0×10^{11}	1.0×10^{15}	384	4.1×10^{10}

Dynamic Range

- $\odot \Delta_r \sim 10^6$ cm out to 10^{15} cm
- 2D spherical geom.
- 7 refinement levels, regridding algorithm

Stage	t_i [s]	t_f [s]	$r_{ m in}~[m cm]$	$r_{\rm out} \ [{\rm cm}]$	$N_{r,0}$	$\Delta r_{ m min} \ [m cm]$
0:	0	5	3.82×10^8	3.2×10^{10}	192	$2.6 imes 10^6$
1:	5	25	3.82×10^8	$7.5 imes 10^{10}$	192	$6.1 imes 10^6$
2:	25	100	1.0×10^9	2.5×10^{11}	192	$2.0 imes 10^7$
3:	100	300	2.0×10^9	9.0×10^{11}	192	$7.3 imes 10^7$
4:	300	1×10^3	4.0×10^9	$3.0 imes 10^{12}$	320	$1.5 imes 10^8$
5:	1×10^3	3×10^3	$1.0 imes 10^{10}$	6.0×10^{12}	320	$2.9 imes 10^8$
6:	3×10^3	1×10^4	$2.0 imes 10^{10}$	$2.0 imes 10^{13}$	352	8.9×10^8
7:	1×10^4	3×10^4	5.0×10^{10}	$6.0 imes 10^{13}$	352	2.7×10^9
8:	$3 imes 10^4$	1×10^5	$1.0 imes 10^{11}$	$2.0 imes 10^{14}$	384	8.1×10^9
9:	1×10^5	2×10^5	2.0×10^{11}	$4.0 imes 10^{14}$	384	$1.6 imes 10^{10}$
10:	2×10^5	5×10^5	5.0×10^{11}	1.0×10^{15}	384	4.1×10^{10}

Fast, kinetic

Slow, thermal

Density

user: smc Tue Apr 1 11:56:12 2008

Fast, kinetic

Slow, thermal

Wed Apr 9 10:46:35 2008

Jet-driven Type Ib SNe

SMC, Pooley, Wheeler, Milosavljevič 2011, ApJ, 727, 104

2.5 & 6 M_o helium core progenitors
Thermal & kinetic jet models in each
FLASH hydro
Custom post-processing radiation modeling

Dynamic range

- 2D cylindrical geom.
- Radius, time-dependent max. refinement level
- Modified FLASH to excise central hole
- Hole radius expands with time
 No need for regrid; start with 25 refinement levels

Kinetic

Thermal

Smaller Progenitor

Density

user: smc Tue Sep 29 17:09:10 20

Kinetic

Thermal

Smaller Progenitor

Mon Sep 28 11:56:02 20

Small progenitor, kinetic jets

Spectra are too soft
 LC time scales right-on!

Soderberg et al. 2008

Phenomenological, jet-driven explosions can explain many of the observations, but lack crucial physics.

Need nuclear EOS, neutrinos, and MHD:

Euler Equations

$$E = \epsilon + \frac{1}{2} |\mathbf{v}|^2$$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} \qquad) + \nabla P = \rho \mathbf{g}$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P_{\mathbf{s}} = \rho \mathbf{g} + \nabla \cdot \boldsymbol{\tau}$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P_{\mathbf{t}} = \rho \mathbf{g} + \nabla \cdot \boldsymbol{\tau}$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P = \rho \mathbf{g} + \nabla \cdot \boldsymbol{\tau}$

τ = viscosity tensor

 $P_* = P + \frac{B^2}{2}$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P = \rho \mathbf{g} + \nabla \cdot \tau$ $\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[(\rho E + P) \mathbf{v} \right]$ $] = \rho \mathbf{v} \cdot \mathbf{g}$

τ = viscosity tensor

 $P_* = P + \frac{B^2}{2}$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P = \rho \mathbf{g} + \nabla \cdot \boldsymbol{\tau}$ $\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[(\rho E_* + P_*) \mathbf{v} - \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \right] = \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{v} \cdot \tau + \sigma \nabla T)$ $+\nabla \cdot [\mathbf{B} \times (\eta \nabla \times \mathbf{B})]$

au = viscosity tensor

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P = \rho \mathbf{g} + \nabla \cdot \tau$

 $\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[(\rho E_* + P_*) \mathbf{v} - \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \right] = \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{v} \cdot \tau + \sigma \nabla T)$ $+ \nabla \cdot \left[\mathbf{B} \times (\eta \nabla \times \mathbf{B}) \right]$

= viscosity tensor
= thermal conductivity
= resistivity

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B}) + \nabla P = \rho \mathbf{g} + \nabla \cdot \mathbf{r}$ $\frac{\partial \rho E}{\partial t} + \nabla \cdot [(\rho E + P) \mathbf{v} - \mathbf{B} (\mathbf{v} \cdot \mathbf{B})] = \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{v} \cdot \mathbf{r} + \sigma \nabla T) + \nabla \cdot [\mathbf{B} \times (\eta \nabla \times \mathbf{B})]$ Induction Equation: $\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}) = -\nabla \times (\eta \nabla \times \mathbf{B})$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$

 $\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v} - \mathbf{B}\mathbf{B}) + \nabla P_{\mathbf{r}} = \rho \mathbf{g} + \nabla \cdot \mathbf{z}$

 $\frac{\partial \rho E}{\partial t} + \nabla \cdot \left[(\rho E_{\star} + P_{\star}) \mathbf{v} - \mathbf{B} (\mathbf{v} \cdot \mathbf{B}) \right] = \rho \mathbf{v} \cdot \mathbf{g} + \nabla \cdot (\mathbf{v} \cdot \mathbf{A} + \mathbf{A} \nabla T) + \nabla \cdot \left[\mathbf{B} \times (\mathbf{A} \nabla \times \mathbf{B}) \right]$ + $\nabla \cdot \left[\mathbf{B} \times (\mathbf{A} \nabla \times \mathbf{B}) \right]$ Induction Equation:

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v}\mathbf{B} - \mathbf{B}\mathbf{v}) = -\nabla \times (\cancel{n}\nabla \times \mathbf{B})$$

Solenoidal Constraint

Three Common Methods to Satisfy Constraint:

Elliptic projection (Brackbill & Barnes 1980)
 Constrained transport (Evans & Hawley 1988)
 Divergence cleansing (Powell et al. 1999)

B-field Amplification in CCSNe

Field compression: field carried along with collapsing plasma: "flux-freezing"

Field winding: linear process, wraps up field lines. $B_{\phi} \approx 2\pi n_{\phi} B_p$

 Magnetorotational Instability (MRI): exponential growth of initial field.
 Saturation field strengths as high as 10¹⁵ – 10¹⁶ G.

MRI

$$au_{\mathrm{MRI}} \sim 4\pi \left(\frac{\partial \ln r}{\partial \Omega}\right) \sim 2P$$

 $\lambda_{\rm MRI}^{\rm max} \sim \frac{2\pi v_A}{\Omega} \sim (10^4 \text{ cm}) P_{10} \frac{B_{12}}{\rho_{11}^{1/2}}$

Grows on the rotational time scale.

Requires restrictive resolution! 100 times that of high-resolution CCSNe sims.

See, e.g., Akiyama et al. (2003), Obergaulinger et al. (2011).

Conclusions

- Observations show that CCSN are aspherical
- Physics of CCSN & the Neutrino Mechanism
- Robust neutrino-driven explosions are not found in sophisticated calculations
- Rotation and magnetic fields may play an important role in shaping or driving CCSN explosions
- Bipolar explosions may explain observations indicating asymmetry

MHD effects are important in CCSN

Extra Slides

Basics of Unsplit Staggered-Mesh (USM) Constrained Transport

 $\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \frac{\partial \mathbf{G}}{\partial y} = 0$

 $\mathbf{U} = (\rho, \rho u, \rho v, \rho w, B_x, B_y, B_z, E)^T$

$$\mathbf{F} = \begin{pmatrix} \rho u \\ \rho u^{2} + p_{tot} - B_{x}^{2} \\ \rho u v - B_{y} B_{x} \\ \rho u w - B_{z} B_{x} \\ 0 \\ u B_{y} - v B_{x} (= -E_{z}) \\ u B_{z} - w B_{x} (= E_{y}) \\ (E + p_{tot}) u - B_{x} (u B_{x} + v B_{y} + w B_{z}) \end{pmatrix}, \quad \mathbf{G} = \begin{pmatrix} \rho v \\ \rho v u - B_{x} B_{y} \\ \rho v u - B_{x} B_{y} \\ \rho v w - B_{z} B_{y} \\ v B_{x} - u B_{y} (= E_{z}) \\ 0 \\ v B_{z} - w B_{y} (= -E_{x}) \\ (E + p_{tot}) v - B_{y} (u B_{x} + v B_{y} + w B_{z}) \end{pmatrix}$$

From Lee & Deane (2009)

MHD Waves

Alfvén waves

0

Cannot "see" the shapes of distant SNe

- Can get wavelength-dependent info on the shapes of the photosphere and line-forming regions
- Measure Stokes parameters:

Cannot "see" the shapes of distant SNe

- Can get wavelength-dependent info on the shapes of the photosphere and line-forming regions
- Measure Stokes parameters:

 $I = I_0 + I_{90}$ $Q = I_0 - I_{90}$ $U = I_{45} - I_{-45}$

Cannot "see" the shapes of distant SNe

 $\leftrightarrow + \uparrow$

 \leftrightarrow - (

- Can get wavelength-dependent info on the shapes of the photosphere and line-forming regions
- Measure Stokes parameters:

 $I = I_0 + I_{90}$ $Q = I_0 - I_{90}$ $U = I_{45} - I_{-45}$

 $\chi = \frac{1}{2} \tan^{-1}(u/q)$

 $P = \sqrt{Q^2/I^2 + U^2/I^2} = \sqrt{q^2 + u^2}$

P=Q=U=0: no net
polarization, circularly
symmetric
SN Polarization

P=Q=U=0: no net
polarization, circularly
symmetric

SN Polarization

P=Q=U=0: no net
polarization, circularly
symmetric

P,Q,U≠0: net polarization, asymmetric emitting region

Ha sub-structure

 Appearance of peaks in line require fast nickel clumps

Elmhamdi et al. 2003

Wednesday, July 27, 2011

Type IIP Polarization

SN 2004dj

Leonard et al. 2006

Rhotosphere Shapes

Thermal

Kinetic

Tes= 1, 10, 30