
Data Structures

Index space

Box : a rectangular region in index space

BoxArray : a union of Boxes at a level

Real data at a level

FAB: FORTRAN-compatible data on a single box
Data on a patch
These patches are quite large – thousands of points

MultiFAB: FORTRAN-compatible data on a union of rectangles
Data at a level
Owner computes rule on FAB data.

FluxRegister: FORTRAN-compatible data on the border of a union of rectangles
Data for synchronization



Data Operations

Index space Operations:

Create and manage box topology

Identify neighbors on same level

Identify which coarse grids underlie a given fine patch

Single-level operations

Fill boundary data from same-level grids

Fill data using physical boundary conditions

Integrate data at a level
Patch by patch for explicit algorithms
Solve over all patches at a level for implicit algorithms

Multi-level operations

Interpolate : coarse→ fine

Average : fine→ coarse

Fill boundary data from coarser grids

Synchronization
Local corrections for explicit algorithms
Implicit synchronization systems for implicit algorithms



Metadata, communications and solvers

Index space operations are naively O(n2)

Each box needs to know its neighbors

Bin BoxArray spatially

Limit searches to boxes in neighboring bins

Communication

Every MultiFAB with the same BoxArray has the same distribution

Each processor caches list of its grids’ nearest neighbors and their processors

Each processor caches list of coarse grids and their processors used to supply
boundary conditions

Messages are ganged: no more than one message is ever exchanged between
processors in an operation



Weak vs. Strong Scaling

Strong scaling

Problem size stays fixed, number of processor increases

Work per core decreases

Weak scaling

Problem size increases as number of processor increases

Work per core stays fixed

Which is more meaningful and/or more relevant?

How might you modify a scaling test to account for hopper’s architecture?



Projects for Today

Go to /project/projectdirs/training/HIPACC 2011/almgren

cp -r BoxLibTest into your scratch space

cd BoxLibTest/NewCode in your own scratch space

make

This will build an executable that solves the wave equation on a union of grids.

To run the code, you can use the file “pbs hopper” to submit a job in the debug queue.

The executable name is main2d.Linux.gcc.gfortran.MPI.ex

First, understand how the code works

Then, possible projects are:

Convert the code to three dimensions. How many changes to you have to make
in the C++?

Do a scaling test in 2D and 3D. Decide how many steps and how big a problem
you should run in order to get reliable timings. Do both a weak scaling test and a
strong scaling test.

Convert one of your own single grid codes to run this way.

Set plot int and Nsteps in the inputs file to generate at least 100 plotfiles and
make a movie of them.


