Data Structures

Index space
@ Box : arectangular region in index space
@ BoxArray : a union of Boxes at a level

Real data at a level

@ FAB: FORTRAN-compatible data on a single box
@ Data on a patch
@ These patches are quite large — thousands of points
@ MultiFAB: FORTRAN-compatible data on a union of rectangles

@ Data at a level
@ Owner computes rule on FAB data.

@ FluxRegister: FORTRAN-compatible data on the border of a union of rectangles
@ Data for synchronization




Data Operations

Index space Operations:
@ Create and manage box topology
@ Identify neighbors on same level
@ Identify which coarse grids underlie a given fine patch

Single-level operations
@ Fill boundary data from same-level grids
@ Fill data using physical boundary conditions

@ Integrate data at a level

@ Patch by patch for explicit algorithms
@ Solve over all patches at a level for implicit algorithms

Multi-level operations
@ |Interpolate : coarse — fine
@ Average : fine — coarse
@ Fill boundary data from coarser grids
@ Synchronization

@ Local corrections for explicit algorithms
@ Implicit synchronization systems for implicit algorithms



Metadata, communications and solvers

Index space operations are naively O(n?)
@ Each box needs to know its neighbors
@ Bin BoxArray spatially
@ Limit searches to boxes in neighboring bins

Communication
@ Every MultiFAB with the same BoxArray has the same distribution
@ Each processor caches list of its grids’ nearest neighbors and their processors

@ Each processor caches list of coarse grids and their processors used to supply
boundary conditions

@ Messages are ganged: no more than one message is ever exchanged between
processors in an operation




Weak vs. Strong Scaling

Strong scaling

@ Problem size stays fixed, number of processor increases
@ Work per core decreases

Weak scaling

@ Problem size increases as number of processor increases
@ Work per core stays fixed

Which is more meaningful and/or more relevant?

How might you modify a scaling test to account for hopper’s architecture?



Projects for Today

Go to /project/projectdirs/training/HIPACC_2011/almgren
cp -r BoxLibTest into your scratch space
cd BoxLibTest/NewCode in your own scratch space
make
This will build an executable that solves the wave equation on a union of grids.
To run the code, you can use the file “pbs_hopper” to submit a job in the debug queue.
The executable name is main2d.Linux.gcc.gfortran.MPl.ex
First, understand how the code works
Then, possible projects are:
@ Convert the code to three dimensions. How many changes to you have to make
in the C++?

@ Do a scaling test in 2D and 3D. Decide how many steps and how big a problem
you should run in order to get reliable timings. Do both a weak scaling test and a
strong scaling test.

@ Convert one of your own single grid codes to run this way.

@ Set plot_int and Nsteps in the inputs file to generate at least 100 plotfiles and
make a movie of them.



