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AMR for Conservation Laws
Consider the 2-D hyperbolic conservation law

Ut + Fx +Gy = 0

where
F = F(U),G = G(U)

Basic discretization:
Finite volume approach with cell-centered data
Flux-based representation of conservation law
Explicit in time update
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Numerical fluxes computed from data at tn in neighborhood of edge
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Basic Structured Grid AMR Ideas
Cover regions requiring high resolution with finer grids

Use (higher-order upwind) methodology for regular grids to integrate
solution

Need to know

how to generate the grid hierarchy
– initially
– every time you regrid

how to integrate the solution forward in time
Integration of data on a patch
Synchronization of levels

Original references:
2-D: Berger and Colella, JCP 1989
3-D: Bell,Berger,Saltzman and Welcome, JCP 1994
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AMR: To Subcycle or Not To Subcycle?
Should we refine in time as well as space?

Yes – subcyle in time (CASTRO, Enzo)
∆tc = r∆tf

Maintain CFL (accuracy of advection scheme) across levels
Reduce total number of cells advanced

No – don’t subcycle (FLASH, RAGE)
∆tc = ∆tf

Compute time step every fine grid time
Simpler synchronization algorithm
Simpler software framework
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AMR: Subcycling in Time?
Suppose we have N cells at each level and L levels with factor 2
refinement.To reach time T :

With L = 4:
Subcycling: must advance
N + 2N + 4N + 8N = 15N cell-steps

No subcycling: must advance
4 · 8N = 32N cell-steps

Type Ia Supernova

With 2 total levels there is a factor of 4/3 more work with no subcycling.
With 3 total levels there is a factor of 12/7 more work with no subcycling.
With 4 levels ... 32/15 ...
With L levels ... ??
(Note that answer changes if N not constant over levels.)

Almgren – p. 15/25



Building the initial grid hierarchy
Fill data at level 0
Estimate where refinement is needed and buffer
Group cells into patches according to a prescribed “grid efficiency”
and refine ⇒ B1, ..., Bn (Berger and Rigoustos, 1991)
Repeat for next level and adjust for proper nesting
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Building the initial grid hierarchy
Fill data at level 0
Estimate where refinement is needed and buffer
Group cells into patches according to a prescribed “grid efficiency”
and refine ⇒ B1, ..., Bn (Berger and Rigoustos, 1991)
Repeat for next level and adjust for proper nesting

Efficiency = 0.5 Efficiency = 0.7 Efficiency = 0.9
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Adaptive integration algorithm
Consider two levels, coarse and fine, with refinement ratio r

∆xf = ∆xc/r , ∆tf = ∆tc/r,

To integrate
Advance coarse grids in time tc → tc +∆tc

Advance fine grids in time r times
Synchronize coarse and fine data

Extend recursively to arbitrary number of refinement levels.
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Integrating on grid patch
How do you integrate a patch of data at level !?

Obtain boundary data needed to call integrator on uniform grid of data.
Assume explicit scheme with stencil width sd

Enlarge patch by sd cells in each
direction and fill with data using
– Physical boundary conditions
– Other patches at the same
level

– Coarse grid data (fillpatch)

Advance grid in time t → t+∆t

Fine-Fine

Physical BC

Coarse-Fine
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FillPatch Operation

To fill fine grid “ghost cells” at t+k∆tf ,

k = 0, ..., r−1, using coarse grid data
Define coarse patch needed for
interpolation

Fill coarse patch at time t and t+∆tc

Time-interpolate data on coarse patch
to time t+k∆tf

Interpolate coarse data to fine patch
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Synchronization
After coarse grid time step and the subcycled advance of fine data, we
have

Uc at tn+1
c

Uf at tn+1
c

However, Uc and Uf are not consistent

Coarse data is not necessarily equal to the average of the fine grid
data “over” it.
Scheme violates conservation because of inconsistent fluxes at
coarse-fine interface
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Synchronization (p2)
How do we address these problems with the solution?

Average down the fine grid data onto all underlying coarse cells

Uc =
1

rd

∑
Uf

Reflux at coarse-fine interfaces

∆xc∆ycU
c = ∆xc∆ycU

c
−∆tcAc

F
c +

∑
∆tfAf

F
f
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Regridding
Compute “error” at each cell : if “too big” then flag cell for refinement

Richardson extrapolation
Coarsen data on a patch at tn−1 and advance by 2∆t

Advance data at tn by ∆t and coarsen
Difference of these two solutions is proportional to error

Functions of solution (e.g., vorticity)
Geometric considerations

Compute refined patches as initially

Fill newly refined regions using conservative interpolation from coarse grid
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Summary of Algorithm
Hyperbolic AMR

For n = 1, ..., Nfinal

Advance(0,tn0 )

Advance (!,t)
If (time to regrid) then

Regrid(!)

FillPatch(!,t)

Integrate(!,t,∆t!)

If (!<!finest) then
For isub = 1, ..., r!

Advance(!+1, t+(isub−1)∆t!+1)
Average down(!,t+∆t!)
Reflux(!,t+∆t!)

End If

Regrid(!): generate new grids at levels !+1 and higher
FillPatch(!,t): fill patch of data at level ! and time t

Integrate(!,t,∆t): Advance data at level ! from t to t+∆t, averaging and storing fluxes at
boundaries of level ! grids if ! > 0 and level ! cells at boundary of ! + 1

Average down(!,t): average (in space) level !+1 data at time t to level !
Reflux(!,t): Add (time- and space-averaged) refluxing corrections to

level ! cells at time t adjacent to level !+1 grids
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Review of Data Operations
Single-level operations

Fill a patch with data from same-level grids
Fill data using physical boundary conditions
Interpolate data in time
Add corrections from stored fluxes at same resolution
Integrate patch of data in time
Find union of rectangles that contain a set of tagged points

Multi-level operations
Map regions between different levels of refinement
Interpolate : coarse → fine
Average : fine→ coarse
Store fluxes from fine grid boundaries at coarse resolution
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Parallel Issues for AMR
Issues are primarily

Data distribution – obvious idea is distributing grids to processors
– Gridding strategy depends on approach to parallelization

Pure MPI
Hybrid: MPI + OpenMP

– Size of grids depends on memory usage, parallelization strategy
and additional physics (e.g. Poisson solve for self-gravity)

Dynamic load balancing
– Need good work estimate
– Data locality

Parallel in space, serial in time ...

We will talk more about these next week
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