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Figure 2. Density PDFs of the initial conditions (left) and after t = 0.75tff (right). Both are fit to lognormal distributions (dashed
lines).

Figure 3. Volume (left) and mass (right) weighted density PDFs at t = 0.75tff , with power law fits.

amplifications by the strong, three dimensional compres-
sions made possible by the large kinetic energy, relative
to the magnetic energy, of the super-Alfvénic turbulence.

The left panel of Figure 5 shows the probability den-
sity function for the magnetic field strength, P (B) for
t = 0 (solid line) and t = 0.75tff (dashed line), here in
a log-log plot. The most significant aspect of this fig-
ure is the strong power law tail after the collapse has
evolved. Gravitational collapse amplifies the peak mag-
netic field strength by 2 orders of magnitude (in fact a
factor of 320), and creates a prominent power law tail.
This powerlaw tail is fit by P (B) ∝ Bx, with x = −2.74.
If one naively takes P (ρ) ∝ ρ−1.5 as expected from a
singular isothermal sphere (as in Section 3) and ρ ∝ B2

(as in other simulations (Li et al. 2004) and observations
(Bertoldi & McKee 1992; Crutcher 1999) of dense cores),
one arrives at x = −3, which is quite close to the value
we find here. Details will be discussed in the next Sec-
tion, where we measure the relationship between B and
ρ in our simulation.

The right panel of Figure 5 shows the mass-weighted
PDF, M(B) for the same snapshots as the left panel.
If we fit a power law to the same field strength range
that was used for P (B), we find M(B) ∝ Bm, where
m = −0.4. However, the power law in M(B) is not
nearly as well defined as for P (B). This is due two re-
lated effects: the power law relation between ρ and B is
less well defined at field strengths above B = 1e − 4G
(see Figure 7 in the next section); and the power law in
density breaks down above ρ/ρ0 > 1000, likely due to
resolution effects (see Figure 3).

5. FIELD STRENGTH VS. DENSITY

Figure 6 shows a contour plot of magnetic field strength
vs density, colored by fraction of mass in each (B, ρ) bin.
The left panel shows t = 0, before the action of gravity.
As in Padoan & Nordlund (1999), the upper envelope is
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Figure 5. Magnetic field PDF P (|B|) (left) and mass-weighted PDF M(|B|) (right) for t = 0 (solid line) and t = 0.75tff (dashed line).

Figure 6. Magnetic field strength vs. density for all zones in the simulation for t = 0 (left) and t = 0.75tff (right). Color field shows
total mass fraction in each (B, ρ) bin.

between the velocity and magnetic field, wherein the ki-
netic energy stretches the magnetic field, hence aligning
the two. The relationship in equation 16 is also expected
from figure 6, demonstrating that the local properties of
the core are dictated by the global flow properties.

7. CORE MASS FUNCTION

One of the open questions in star formation is the ori-
gin of the stellar initial mass function (IMF). Salpeter
(1955) first measured this and fit it to a power law,

dN = 0.03( M
M!

)αdM. (17)

α = −2.35 (18)

This fit was done between 1 and 10 M!. The exact
value of the exponent in the 1 to 10 M! range is still
under investigation (Scalo 2005), though recent measure-
ments give the range of α to be between -2.3 and -2.8.

It has been proposed that the IMF and CMF are di-
rectly related to one another, either directly (Motte et al.
1998) or with some fraction of each core lost in the final
collapse and accretion phase (Enoch et al. 2008). This
implies that the IMF is determined by the global or large
scale processes of star formation, in our model the com-
bined effects of turbulence and gravity, as in the model of
Padoan & Nordlund (2002). Alternative models have the
IMF set by local physics, once protostars have formed
within the prestellar condensations. These models in-
clude the competitive accretion model of Bonnell et al.
(2001), wherein the population of neighboring protostars
influences the final mass of any given star; and models
of Shu et al. (1987) or Myers (2010), where protostellar
outflows halt or slow the inflow of gas onto the protostar.

Figure 9 shows the mass distribution for all bound
cores. The fit to the high end of the distribution is
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Figure 7. Mass weighted average B vs. ρ (dotted line) and fit to
the range where the density PDF is also a clear power law (solid
line). The fit is a power law with exponent 0.48.

n(M) ∝ M−2.1±0.6. The fit was performed by fitting
a power law between the peak and the highest bin for
a succession of bins between 5 and 25. We find good
agreement between our slope and the IMF slopes men-
tioned above, and the slope for the CMF as measured by
Enoch et al. (2008), x = −2.3 ± 0.6. Further agreement
with the CMF is seen in figure 10, which shows the cu-
mulative mass function N(> M) =

∫ ∞

M n(M)dM for our
data (black line) and the prestellar cores from Perseus,
Ophiuchus and Serpens presented in Enoch et al. (2009)
(grey line). Here we have scaled both populations to the
Bonnor Ebert mass,

MBE =
1.18c4

s

G3/2ρ1/2
0

.

The observed points used a Bonnor Ebert mass of 1.5M#,
which corresponds to a background density of ≈ 300cm−3

at 10 K. This is somewhat higher than the mean den-
sity in these clouds, but not unreasonable for the am-
bient density immediately surrounding the cores, which
have mean densities of ≈ 105cm−2. The simulated cores
used the mean density in the box, which in the scaling
used throughout this paper gives MBE = 10M#, though
strictly speaking this is a free value. The observational
data are all prestellar cores from the 1.1 mm Bolocam
survey of Perseus, Serpens and Ophiuchus presented in
Enoch et al. (2006), Young et al. (2006), Enoch et al.
(2007), respectively, that do not have an associated in-
frared source in the Spitzer c2d catalog. The majority
of these objects can reasonably be assumed to be self
gravitating, based on comparisons of the Perseus cores
to kinematic information from the molecular line survey
of the same region by Rosolowsky et al. (2008). As our
simulation only attempts to model the prestellar core
phase of star formation, and not the formation of the
actual star itself, this sample of objects is the best ob-
servational counterpart for comparison.

8. CONCLUSIONS

In this work, we present density and magnetic field
distributions for a super Alfvénic turbulence simulation

with self gravity. The simulation was run with the AMR
extension of Enzo described by Collins et al. (2010),
allowing us unprecedented spatial resolution. Super-
Alfvénic turbulence has been proposed as the primary
mechanism for star formation, providing good explana-
tions of the star formation rate (Krumholz & McKee
2005; Padoan & Nordlund 2009) and initial mass func-
tion. (Padoan & Nordlund 2002). Here we provide two
checks of this model against observations, and explore
deviations from the predictions of super-Alfvénic turbu-
lence caused by the addition of self gravity.

We find in Sections 3 and 4 that power law tails develop
for both high density and high magnetic field in volume
and mass weighted PDFs, P (ρ) ∝ ρ−1.67 and P (B) ∝
B−2.74, respectively. The volume-weighted density PDF
is consistent with the prediction of a singular isothermal
sphere (SIS) (Kritsuk et al. 2010a) P (ρSIS) ∝ ρ−1.5.

The relationship between the magnetic field and the
density also shows a power law behavior B ∝ ρ0.48

throughout the gas, consistent with the findings of Li
et al. (2004), who found a similar behavior in the peak
density/field relation in cores. This then allows us to ex-
plain the magnetic PDF, by combining this result with
the density PDF.

Gravitationally bound cores found in our simulation
were compared against several observational surveys.
Comparisons with the most recent Zeeman splitting mea-
surements of Troland & Crutcher (2008) and Falgarone
et al. (2008) show that the mass-to-flux ratio in our sim-
ulations agrees in value and behavior with those found
observationally. The relationship between field strength
and column density is fit to a power law, B ∝ N0.57,
demonstrating that significant mass-to-flux, thus mag-
netic support, is lost due to motion along the field lines.

Comparing our core mass function (CMF) to that of
prestellar cores in Enoch et al. (2008), we again find ex-
cellent agreement. A slope of 2.1 ± 0.6 agrees with their
fit value of 2.3 ± 0.6, and cumulative mass distributions
line up almost identically. The relatively good match
between the observed CMF and the observed IMF indi-
cates that the IMF is determined well before the onset
of nuclear burning, at a relatively low (compared to the
protostar) density. A multiplicative offset of > 1/4 is
seen between the cores of Enoch et al. (2008) and the
observed IMF, indicating that as much as 3/4 of the
mass is lost in the final collapse phase. However, this
is only an upper limit to the lost fraction, as the peak
of the observed CMF is heavily influenced by its com-
pleteness limit. Bound cores in our simulation agree with
the observed CMF extremely well, indicating that super-
Alfvénic turbulence and gravity are primarily responsible
for the structure of the mass distribution of the CMF,
and ultimately the IMF.

The authors would like to acknowledge financial sup-
port from NSF grants AST0808184 and AST0908740,
and computational resources provided by the Na-
tional Institute for Computational Sciences under LRAC
allocation MCA98N020 and TRAC allocation TG-
AST090110.
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Figure 8. Line of sight magnetic field strength Blos vs column density N for three populations of cores: CN Zeeman splitting measurements
of Falgarone et al. (2008) (grey squares); OH Zeeman splitting measurements of Troland & Crutcher (2008) (black squares); and bound
objects in our simulation (colored points). Color indicates the ratio of gravitational to magnetic energy. At time t = 0 (left) and t = 0.75tff

(right) Color indicates λE =
p

EG/EB

Figure 9. Mass distribution of bound cores. The fit line is
N(M) ∝ M−2.1±0.6, consistent with both IMF and CMF mea-
surements.
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Ambipolar Diffusion

• I don’t have it.

• Things look pretty good.

• Do I need it?

• When do I need it?
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Conclusions

• Turbulence + Gravity = Lognormal + Powerlaw

• +Magnetic Fields = Large field strengths+Powerlaw

• AMR + MHD necessary to probe Star Formation

• Excellent agreement with observed “Mass to Flux”

• Excellent agreement with observed mass distribution

• Diffusion maybe unimportant.


