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The CMB

• The CMB is a 2D projection of a 3D field.
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• Different realizations of the random field can give the same 
CMB.
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Cosmic Variance

• Measuring the power spectrum in a perfect world:

14

h0|�̂(x, ⌘)�̂⇤
(x, ⌘)|0i =

Z 1

0

dk

(2⇡)2
k2|vk|2 '

Z
˜k

0

dk

(2⇡)2
1

⌘2k
+

Z 1

˜k

dk

(2⇡)2
k (207)

h0|ˆ�(x, ⌘)ˆ�⇤
(x, ⌘)|0i = 1

a2
h0|�̂(x, ⌘)�̂⇤

(x, ⌘)|0i =
✓
H

2⇡

◆
2

Z
˜k

0

dk

k
(208)

h0|ˆ�(x, t)ˆ�⇤
(x, t)|0i = H3

4⇡2

(t� t
0

) (209)

h0|�̂~k�̂
⇤
~k0 |0i = �(~k � ~k0)

(2⇡)2

k3
P�(k) (210)

h0|ˆ�(x, ⌘)ˆ�⇤
(y, ⌘)|0i ! hˆ�(x, ⌘)ˆ�⇤

(y, ⌘)i (211)

A =

V 3

12⇡2

(@�V )

2M6

P

(212)

ns � 1 = 2⌘ � 6✏ (213)

ns < 1 (214)

ns > 1 (215)

AT =

✓
H

2⇡

◆
2

(216)

r ⌘ AT

A
= 16✏ (217)

�C`

C`
=

r
1

2`+ 1

(218)

(219)

14

h0|�̂(x, ⌘)�̂⇤
(x, ⌘)|0i =

Z 1

0

dk

(2⇡)2
k2|vk|2 '

Z
˜k

0

dk

(2⇡)2
1

⌘2k
+

Z 1

˜k

dk

(2⇡)2
k (207)

h0|ˆ�(x, ⌘)ˆ�⇤
(x, ⌘)|0i = 1

a2
h0|�̂(x, ⌘)�̂⇤

(x, ⌘)|0i =
✓
H

2⇡

◆
2

Z
˜k

0

dk

k
(208)

h0|ˆ�(x, t)ˆ�⇤
(x, t)|0i = H3

4⇡2

(t� t
0

) (209)

h0|�̂~k�̂
⇤
~k0 |0i = �(~k � ~k0)

(2⇡)2

k3
P�(k) (210)

h0|ˆ�(x, ⌘)ˆ�⇤
(y, ⌘)|0i ! hˆ�(x, ⌘)ˆ�⇤

(y, ⌘)i (211)

A =

V 3

12⇡2

(@�V )

2M6

P

(212)

ns � 1 = 2⌘ � 6✏ (213)

ns < 1 (214)

ns > 1 (215)

AT =

✓
H

2⇡

◆
2

(216)

r ⌘ AT

A
= 16✏ (217)

�C`

C`
=

r
1

2`+ 1

(218)

C` =
1

2`+ 1

X̀

m=�`

a`ma⇤`m (219)

Thursday, 4 July, 13



Cosmic Variance

• Measuring the power spectrum in a perfect world:
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• There are a finite number of data points in principle.

Cosmic Variance
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Cosmic Variance

• Measuring the power spectrum in our world: foregrounds.

Planck Collaboration: The Planck mission

Fig. 9. The nine Planck frequency maps show the broad frequency response of the individual channels. The color scale (shown below) has been
tailored to show the full dynamic range of the maps.

18
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Cosmic Variance

Planck Collaboration: The Planck mission

Fig. 9. The nine Planck frequency maps show the broad frequency response of the individual channels. The color scale (shown below) has been
tailored to show the full dynamic range of the maps.

18

Planck Collaboration: The Planck mission

Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-di↵erence. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at ` < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-`’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (` < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1�.

At smaller scales, 50 < ` < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their di↵erence (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4⇥10�3

respectively for 100 and 217 GHz with respect to 143 GHz

25

• Astrophysical sources vary significantly with frequency, the 
CMB does not -- can use maps from different frequencies.

• Measuring the power spectrum in our world: foregrounds.
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Cosmic Variance

• Measuring the power spectrum in our world: spatially 
varying noise.

Planck Collaboration: The Planck mission

Fig. 5. Survey coverage for the “nominal” mission and the “cryogenic”
mission. The colour scale represents total integration time varying be-
tween 50 and 8000 sec deg�2) for the 353 GHz channel. The maps are
Mollweide projections of the whole sky in Galactic coordinates, pix-
elised according to the HEALPix (Górski et al. 2005) scheme at Nside =
1024.

Routine operations were significantly modified only twice
during the routine survey:

– The Sorption Cooler switchover from the nominal to the re-
dundant unit took place on 11 August 2010, leading to an
interruption of acquisition of useful scientific data for ⇠2
days (one for the operation itself, and one for re-tuning of
the cooling chain).

– The satellite’s rotation speed was increased to 1.4 rpm be-
tween 8 and 16 December 2011. During this period the
planet Mars was observed. This operation was implemented
to measure systematic e↵ects on the scientific data linked to
the spin rate.

Scientific data was acquired during the above two periods
but was not used for the generation of the 2013 products.

The resulting integration time after the completion of the
“nominal” and “cryogenic” phases of the mission is illustrated in
Fig. 5 for a representative frequency channel. More details can
be found in the Explanatory Supplement (Planck Collaboration
ES 2013).

Operations have been extremely smooth throughout the mis-
sion. The total time lost due to a few anomalies is about 5 days
spread over the 15.5 months of the nominal mission.

4.3. Satellite environment

The physical environment of the satellite during the routine
phase is illustrated in Fig. 6. The main long-timescale thermal
modulation is a seasonal e↵ect driven by the solar power ab-
sorbed by the satellite, which varies with the distance from the
Sun. The thermal environment is sensitive to various satellite
operations. For example, before day 257, the communications
transmitter was turned on and o↵ around every daily data trans-
mission period, and caused a daily temperature variation clearly
visible at all locations in the Service Module, see Fig. 6. Some
operational events had a significant thermal impact, which can

be appreciated in Fig. 6 and is detailed in Planck Collaboration
ES (2013)4.

The Sorption Cooler dissipates a large amount of power and
its variations are seen at all levels within the satellite. The bot-
tom panel of Fig. 6 shows the temperature evolution of the cold-
est of three stacked conical structures or V-grooves that radia-
tively isolate the warm service module (SVM) from the cold
payload module. Most variations on this structure are due to
quasi-weekly power input adjustments of the sorption cooler,
which is heat-sunk to it. Many adjustments are seen in the ⇠3
months leading up to switchover. After switchover, thermal in-
stabilities were present in the newly operating sorption cooler,
which required frequent adjustment, until they reduced signifi-
cantly around day 750.

Fig. 6 also shows the radiation environment history. As
Planck started operations, solar activity was extremely low, and
Galactic cosmic rays (which produce sharp glitches in the HFI
bolometer signals, see Sect. 4.4.2) were able to enter the he-
liosphere and hit the satellite. As the Sun progressed into so-
lar maximum, the cosmic ray flux as measured by the onboard
radiation monitor (SREM, Planck Collaboration ES (2013)) de-
creased correspondingly, but solar flares increased.

4.4. Instrument environment, operations, and performance

4.4.1. LFI

The front-end of the LFI array is cooled to 20 K by a sorption
cooler system, which included a nominal and a redundant unit
(Planck Collaboration II 2011). In early August of 2010, the gas-
gap heat switch of one compressor element on the active cooler
reached the end of its life. Although the cooler can operate with
as few as four (out of six) compressor elements, it was decided to
switch operation to the redundant cooler. On 11 August at 17:30
GMT the working cooler was commanded o↵, and the redun-
dant one was switched on. Following this operation, an increase
of temperature fluctuations in the 20 K stage was observed. The
cause has been ascribed to the influence of liquid hydrogen re-
maining in the cold end of the inactive (previously operating)
cooler. These thermal fluctuations produced a measurable e↵ect
in the LFI data, but they propagate to the power spectrum at a
level more than four orders of magnitude below the CMB tem-
perature signal (Planck Collaboration III 2013) and have a neg-
ligible e↵ect on the science data. Furthermore, in February 2011
these fluctuations were reduced to a much lower level and have
remained low ever since.

The behaviour of the 22 LFI radiometers has been ex-
tremely stable since the beginning of the observations (Planck
Collaboration III 2013), with 1/ f knee frequencies of order
50 mHz and white noise levels unchanging within a few percent.
After optimization during the CPV phase, no changes to the bias
of the front-end HEMT low-noise amplifiers and phase switches
were required throughout the nominal mission.

The main disturbance to LFI data acquisition has been an
occasional bit-flip change in the gain-setting circuit of the data
acquisition electronics, probably due to cosmic ray hits (Planck
Collaboration II 2013). Each of these events leads to a loss of a
fraction of a single ring for the a↵ected detector. The total level

4 the most notable among these being: a) the “catbed” event between
110 and 126 days after launch; b) the “day Planck stood still” 191 days
after launch; c) the sorption cooler switchover (OD 460); d) the change
in the thermal control loop (OD 540) of the LFI radiometer electronics
assembly box; and e) the spin-up campaign around OD 950.

9

• The measured signal is not completely statistically 
isotropic--need to understand precisely.
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Cosmic Variance
Planck Collaboration: The Planck mission
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Fig. 19. The temperature angular power spectrum of the primary CMB from Planck, showing a precise measurement of seven acoustic peaks, that
are well fit by a simple six-parameter⇤CDM theoretical model (the model plotted is the one labelled [Planck+WP+highL] in Planck Collaboration
XVI (2013)). The shaded area around the best-fit curve represents cosmic variance, including the sky cut used. The error bars on individual points
also include cosmic variance. The horizontal axis is logarithmic up to ` = 50, and linear beyond. The vertical scale is `(`+ 1)Cl/2⇡. The measured
spectrum shown here is exactly the same as the one shown in Fig. 1 of Planck Collaboration XVI (2013), but it has been rebinned to show better
the low-` region.
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Fig. 20. The temperature angular power spectrum of the CMB, esti-
mated from the SMICA Planck map. The model plotted is the one la-
belled [Planck+WP+highL] in Planck Collaboration XVI (2013). The
shaded area around the best-fit curve represents cosmic variance, in-
cluding the sky cut used. The error bars on individual points do not in-
clude cosmic variance. The horizontal axis is logarithmic up to ` = 50,
and linear beyond. The vertical scale is `(` + 1)Cl/2⇡. The binning
scheme is the same as in Fig. 19.

8.1.1. Main catalogue

The Planck Catalogue of Compact Sources (PCCS, Planck
Collaboration XXVIII (2013)) is a list of compact sources de-

tected by Planck over the entire sky, and which therefore con-
tains both Galactic and extragalactic objects. No polarization in-
formation is provided for the sources at this time. The PCCS
di↵ers from the ERCSC in its extraction philosophy: more e↵ort
has been made on the completeness of the catalogue, without re-
ducing notably the reliability of the detected sources, whereas
the ERCSC was built in the spirit of releasing a reliable catalog
suitable for quick follow-up (in particular with the short-lived
Herschel telescope). The greater amount of data, di↵erent selec-
tion process and the improvements in the calibration and map-
making processing (references) help the PCCS to improve the
performance (in depth and numbers) with respect to the previ-
ous ERCSC.

The sources were extracted from the 2013 Planck frequency
maps (Sect. 6), which include data acquired over more than two
sky coverages. This implies that the flux densities of most of
the sources are an average of three or more di↵erent observa-
tions over a period of 15.5 months. The Mexican Hat Wavelet
algorithm (López-Caniego et al. 2006) has been selected as the
baseline method for the production of the PCCS. However, one
additional methods, MTXF (González-Nuevo et al. 2006) was
implemented in order to support the validation and characteriza-
tion of the PCCS.

The source selection for the PCCS is made on the basis of
Signal-to-Noise Ratio (SNR). However, the properties of the
background in the Planck maps vary substantially depending on
frequency and part of the sky. Up to 217 GHz, the CMB is the

27

Error bars very close to 
cosmic variance limit 
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Cosmic Variance
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Cosmic Variance

• Each multipole gets contributions from a variety of k.

• Low multipoles get dominant contribution from largest scales.
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Cosmic Variance

• Each multipole gets contributions from a variety of k.

• Low multipoles get dominant contribution from largest scales.

The most (intrinsic) uncertainty is at the largest 
scales and therefore near the beginning of 

inflation. 
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Cosmic Variance

• Each multipole gets contributions from a variety of k.

• Low multipoles get dominant contribution from largest scales.

The most (intrinsic) uncertainty is at the largest 
scales and therefore near the beginning of 

inflation. 

Can we do better?
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A Finite Amount of information

• We see only what is on our light cone.

• e.g. we don’t see the actual galaxies that the fluctuations in 
the CMB grow into.
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time 1 time 2 time 3
P(t = 0) P(t1) P(t2) P(t3)

A Finite Amount of information

• The best we get is a set of projections:
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time 1 time 2 time 3
P(t = 0) P(t1) P(t2) P(t3)

A Finite Amount of information

• The best we get is a set of projections:

• With more projections, we can better test our theory of 
initial conditions and evolution for probability distributions.

• Hopefully realized in measurements of the 21cm hydrogen 
line.
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A Finite Amount of information

• Finite number of linear modes to measure.
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A Finite Amount of information

• Finite number of linear modes to measure.
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A Finite Amount of information

• Without a fundamental CC, we can see everything and travel 
to any galaxy we currently observe
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A Finite Amount of information

• Another consequence of a cosmological constant: maximum 
precision for any conceivable experiment.

can’t separate things 
to arbitrarily large 
distances
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A Finite Amount of information

• Another consequence of a cosmological constant: maximum 
precision for any conceivable experiment.

can’t make an 
arbitrarily large or 
complicated apparatus

There is a biggest black hole, 
and therefore a biggest 
apparatus and a finite number 
of states.

Thursday, 4 July, 13



A Finite Amount of information

• Another consequence of a cosmological constant: maximum 
precision for any conceivable experiment.

Any detector is being 
bombarded by Hawking 
radiation
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A Finite Amount of information

• Another consequence of a cosmological constant: maximum 
precision for any conceivable experiment.

Any detector has a 
finite lifetime
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⌦c, ⌦b, ⌦⇤, A, ns, ⌧

In Practice

• How do we compare data with theory?

evolve

• Test the fit to data, repeat.

experimental 
details

• Important part: include other datasets!

Pr(data|model)
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In Practice

• Include more variables, and test the fit.

10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

12 Planck Collaboration: Constraints on inflation

4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum does not fit the data, and that at least the first two terms,
As and ns, in the expansion of the primordial power spectrum in
powers of ln(k) given in Eq. 10 are needed. Here we consider
whether the data require the next term known as the running of
the spectral index (Kosowsky & Turner, 1995), defined as the
derivative of the spectral index with respect to ln k, dns ,t/d ln k
for scalar or tensor fluctuations. In slow-roll single-field infla-
tion, the running is second order in the Hubble slow-roll param-
eters, for scalar and for tensor perturbations (see Eqs. 17 and
18, respectively) (Leach et al., 2002), and thus is typically sup-
pressed with respect to, e.g., ns � 1 and nt, which are first order.
If the slow-roll approximation holds and the inflaton has reached
its attractor solution, dns/d ln k and dnt/d ln k are related to the
potential slow-roll parameters as in Eqs. 17 and 18. Given the
tight constraints on the first two slow-roll parameters ✏V and ⌘V
(✏1 and ✏2) from the present data, typical values of the running to
which Planck is sensitive (Pahud et al., 2007) would generically
be dominated by the contribution from the third derivative of the
potential, encoded in |⇠2V | (or ✏3).

While it is easy to see that the running is invariant under a
change in pivot scale, the same does not hold true for the spectral
index and the amplitude of the primordial power spectrum. It is
convenient to choose k⇤ such that dns/d ln k and ns are decorre-
lated (Cortês et al., 2007). This approach minimizes the inferred
variance of ns and facilitates comparison with constraints on ns
in the power law models. Note however that the decorrelation
pivot scale kdec⇤ depends both on the model and data set consid-
ered in the analysis.

We consider a model parameterizing the power spectrum us-
ing As(k⇤) , ns(k⇤), and dns/d ln k, where k⇤ = 0.05 Mpc�1. The
joint constraints on ns and dns/d ln k at the decorrelation scale
of kdec⇤ = 0.04 Mpc�1 are shown in Fig. 4. The Planck+WP con-
straints on the running do not change significantly when com-
plementary data sets such as Planck lensing, CMB high-`, and
BAO data are included. We find

dns/d ln k = �0.013 ± 0.009 (68% CL, Planck+WP) , (45)

which is negative at the 1.5� level. This reduces the the uncer-
tainty compared to previous CMB results. Error bars are reduced
by 60% compared to the WMAP 9-year results (Hinshaw et al.,
2012a), and by 20-30% compared to WMAP supplemented by
SPT and ACT data (Hou et al., 2012; Sievers et al., 2013). Planck
finds a smaller scalar running than SPT+WMAP7 (Hou et al.,
2012), and larger then ACT+WMAP7 (Sievers et al., 2013). The
best-fit likelihood improves by only ��2

e↵ ⇡ 1.5 (3 when high-`
data are included) with respect to the minimal case in which ns is
scale independent, indicating that the deviation from scale inde-
pendence is not very significant. The constraint for the spectral
index in this case is 0.9630 ± 0.0065 at 68% CL at the decor-
relation pivot scale k⇤ = 0.038 Mpc�1. This result implies that
the third derivative of the potential is small, i.e., |⇠2V | ⇠ 0.007,
but compatible with zero at 95% CL, for inflation at low energy
(i.e., with ✏V ⇡ 0).

We also test the possibility that the running depends on the
wavelength so that d2ns/d ln k2 is nonzero. With Planck+WP
data, we find d2ns/d ln k2 = 0.020+0.016

�0.015. This result is stable
with respect to the addition of complementary data sets. When
d2ns/d ln k2 is allowed in the fit, we find a value for the running
dns/d ln k consistent with zero.

Finally we allow a non-zero primordial gravitational wave
spectrum together with the running. The tensor spectral in-
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Fig. 2. Marginalized joint 68% and 95% CL for (dns/d ln k , ns)
using Planck+WP+BAO, either marginalizing over r or fixing
r = 0 at k⇤ = 0.038 Mpc�1. The purple strip shows the prediction
for single monomial chaotic inflationary models with 50 < N⇤ <
60 for comparison.

dex and its running are set by the slow-roll consistency re-
lations to second order, with nt = �r(2 � r/8 � ns)/8 and
dnt/d ln k = r(r/8 + ns � 1)/8. Planck measures the running to
be dns/d ln k = �0.016 ± 0.010 when tensors are included (see
Table 5 and Fig. 4). The constraints on the tensor-to-scalar ra-
tio are relaxed compared to the case with no running, due to an
anti-correlation between r and dns/d ln k, as shown in Fig. 4 for
Planck+WP+BAO.

Varying both tensors and running, Planck+WP implications
for slow-roll parameters are ✏V < 0.015 at 95% CL, ⌘V =
�0.014+0.015

�0.011, |⇠2V | = 0.009 ± 0.006.
In summary, the Planck data prefer a negative running for

the scalar spectral index of order dns/d ln k ⇡ �0.015 at the
1.5� significance level, alone and in combination with other
astrophysical data sets. Weak statistical evidence for non-zero
negative values of dns/d ln k has been claimed in several previ-
ous investigations with the WMAP data and smaller scale CMB
data (e.g., Spergel et al., 2003; Peiris et al., 2003; Dunkley et al.,
2011; Hinshaw et al., 2012a; Hou et al., 2012).

If primordial, negative values for dns/d ln k of order 10�2,
would be interesting for the physics of inflation. The running of
the scalar spectral index is a key prediction for inflationary mod-
els. It is strictly zero for power law inflation, whose fit to Planck
was shown to be quite poor in the previous section. Chaotic
monomial models with V(�) / �n predict dns/d ln k ⇡ �8(n +
2)/(4N+n)2 ⇡ (ns�1)2, and the same order of magnitude (10�3)
is quite typical for many slow-roll inflationary models, such as
natural inflation or hilltop inflation, to name a few. It was pointed
out that a large negative running of dns/d ln k . �10�2 would
make it difficult to support the N⇤ ⇡ 50 e-foldings required from
inflation (Easther & Peiris, 2006), but this holds only without
nonzero derivatives higher than the third order in the inflation-
ary potential. Designing inflationary models that predict a neg-
ative running of O(10�2) with an acceptable ns and number of
e-folds is not impossible, as the case with modulated oscilla-
tions in the inflationary potential demonstrates (Kobayashi &
Takahashi, 2011). This occurs, for instance, in the axion mon-
odromy model when the instanton contribution is taken into ac-

6 parameter model 
still works best!!!
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Eternal Inflation: is this our universe?

Movie: Anthony Aguirre
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Really?
• An infinite number of individually infinite universes in an infinite 

expanding background? 

Surely I can’t be serious!
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Really?
• An infinite number of individually infinite universes in an infinite 

expanding background? 

Surely I can’t be serious!

• Eternal inflation is a direct consequence of:

non-unique vacuum 
state

(possible in standard model)

(common in BSM physics)

(inevitable in string theory)

Quantum field 
theory

(works fantastically)

accelerated 
expansion

(observed: dark energy)

(inferred: inflation)
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Observational Tests of Eternal Inflation

•Strong theoretical motivation, but is eternal inflation 
experimentally verifiable?
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Observational Tests of Eternal Inflation

•Strong theoretical motivation, but is eternal inflation 
experimentally verifiable?

Our bubble does not evolve in isolation....

The collision of our bubble with others provides an 
observational test of eternal inflation.

Aguirre, MCJ, Shomer
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Making predictions and testing models
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• Collisions are always in our past.
• The outcome is fixed by the potential and kinematics.

today
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• Collisions are always in our past.
• The outcome is fixed by the potential and kinematics.

• To study what happens, need full GR.
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Bubble collisions
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• Collisions are always in our past.
• The outcome is fixed by the potential and kinematics.

• To study what happens, need full GR.

• We want to find the post-collision cosmology: GR.
• Huge center of mass energy in the collision.
• Non-linear potential, non-linear field equations.

today

Slow-roll
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�(x, z)

Numerical solutions

• Numerical simulations with full GR: full dynamics. 

ds2 = ��(x, z)dz2 + a(x, z)dx2 + z2dH2
2
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FIG. 4. Two potentials we consider in simulations of vacuum bubbles that should lead to classical transitions. On the left,
the false vacuum can transition a lower energy vacuum. The collision of two such bubbles can induce a transition to the third,
even lower energy, vacuum. On the right, a potential where the middle vacuum has the lowest energy. A classical transition
can also possibly occur, but this time to a higher energy phase. [HVP: Could you label the axes please?]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5. ⇥ 10�11

1. ⇥ 10�10

1.5 ⇥ 10�10

2. ⇥ 10�10

2.5 ⇥ 10�10

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03

1.5 ⇥ 10�10

2. ⇥ 10�10

2.5 ⇥ 10�10

FIG. 5. The first of the Large-field potentials we consider. [HVP: rogue capitalization?] On the left is the full potential. On
the right is a plot of the potential only in the vicinity of the potential barriers. In this example, there is cosmological evolution
both in the observation and collision bubbles. [HVP: Could you label the axes please? There is a weird cuto� of the top of
these plots, where the axis tickmarks are visible but the top line of the plot is not.]

than and smaller than Mp [HVP: suggest MPl] respectively. In the case of large-field models, it is necessary to design
potentials with a hierarchy of scales. This is because potentials with a barrier width comparable to Mp typically do
not support CDL bubbles, while inflationary segments with a width greater than Mp are necessary. We consider the
two types of large-field models shown in Figs. 5 and 6.

Small-field models of inflation require less of a hierarchy in scales, and we consider the two representative examples
shown in Fig. ??. [[Fill in the blanks here....]]
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FIG. 6. The second of the Large-field potentials we consider. On the left is the full potential. On the right is a plot of
the potential only in the vicinity of the potential barriers. In this example, there is cosmological evolution only inside the
observation bubble, with the collision bubble containing a vacuum.[HVP: Could you label the axes please?]

False Vacuum

True or False Vacuum

Vacuum

True

Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form

ds2 = H�2
f d⇧2 + H�2

f sin2(⇧)
�
d�2 + cos2 �d⇥2

�
. (6)

This form of the metric matches the CDL form of the metric with ⇤ = H�1
f sin(Hf⇥)

if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)

ẋ(s = smax) = 0 (8)

E ' uT,F (9)

V (⇧) (10)

5
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• 2 types of bubbles from false vacuum.
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than and smaller than Mp [HVP: suggest MPl] respectively. In the case of large-field models, it is necessary to design
potentials with a hierarchy of scales. This is because potentials with a barrier width comparable to Mp typically do
not support CDL bubbles, while inflationary segments with a width greater than Mp are necessary. We consider the
two types of large-field models shown in Figs. 5 and 6.

Small-field models of inflation require less of a hierarchy in scales, and we consider the two representative examples
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FIG. 6. The second of the Large-field potentials we consider. On the left is the full potential. On the right is a plot of
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�C• Slow roll inflation inside one, starting near          .
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two types of large-field models shown in Figs. 5 and 6.
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Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form

ds2 = H�2
f d⇧2 + H�2

f sin2(⇧)
�
d�2 + cos2 �d⇥2

�
. (6)

This form of the metric matches the CDL form of the metric with ⇤ = H�1
f sin(Hf⇥)

if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)

ẋ(s = smax) = 0 (8)

E ' uT,F (9)

V (⇧) (10)
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• After the collision, fields linearly superpose: potential key.

• Dynamics necessary!

• Colliding identical bubbles.

Thursday, 4 July, 13



2(�C � �B)

Numerical solutions

11

�0.010 �0.005 0.000 0.005 0.010

5. ⇥ 10�11
1. ⇥ 10�10
1.5 ⇥ 10�10
2. ⇥ 10�10
2.5 ⇥ 10�10
3. ⇥ 10�10

�0.005 0.000 0.005
0

2. ⇤ 10�11
4. ⇤ 10�11
6. ⇤ 10�11
8. ⇤ 10�11
1. ⇤ 10�10

⇥

V

FIG. 4. Two potentials we consider in simulations of vacuum bubbles that should lead to classical transitions. On the left,
the false vacuum can transition a lower energy vacuum. The collision of two such bubbles can induce a transition to the third,
even lower energy, vacuum. On the right, a potential where the middle vacuum has the lowest energy. A classical transition
can also possibly occur, but this time to a higher energy phase. [HVP: Could you label the axes please?]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

5. ⇥ 10�11

1. ⇥ 10�10

1.5 ⇥ 10�10

2. ⇥ 10�10

2.5 ⇥ 10�10

�0.03 �0.02 �0.01 0.00 0.01 0.02 0.03

1.5 ⇥ 10�10

2. ⇥ 10�10

2.5 ⇥ 10�10

FIG. 5. The first of the Large-field potentials we consider. [HVP: rogue capitalization?] On the left is the full potential. On
the right is a plot of the potential only in the vicinity of the potential barriers. In this example, there is cosmological evolution
both in the observation and collision bubbles. [HVP: Could you label the axes please? There is a weird cuto� of the top of
these plots, where the axis tickmarks are visible but the top line of the plot is not.]

than and smaller than Mp [HVP: suggest MPl] respectively. In the case of large-field models, it is necessary to design
potentials with a hierarchy of scales. This is because potentials with a barrier width comparable to Mp typically do
not support CDL bubbles, while inflationary segments with a width greater than Mp are necessary. We consider the
two types of large-field models shown in Figs. 5 and 6.

Small-field models of inflation require less of a hierarchy in scales, and we consider the two representative examples
shown in Fig. ??. [[Fill in the blanks here....]]

0.0 0.5 1.0 1.5 2.0 2.5
0

5. ⇥ 10�11
1. ⇥ 10�10
1.5 ⇥ 10�10
2. ⇥ 10�10
2.5 ⇥ 10�10
3. ⇥ 10�10

�0.005 0.000 0.005 0.010
1.8 ⇥ 10�10
2. ⇥ 10�10
2.2 ⇥ 10�10
2.4 ⇥ 10�10
2.6 ⇥ 10�10
2.8 ⇥ 10�10
3. ⇥ 10�10

FIG. 6. The second of the Large-field potentials we consider. On the left is the full potential. On the right is a plot of
the potential only in the vicinity of the potential barriers. In this example, there is cosmological evolution only inside the
observation bubble, with the collision bubble containing a vacuum.[HVP: Could you label the axes please?]

False Vacuum

True or False Vacuum

Vacuum

True

Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form

ds2 = H�2
f d⇧2 + H�2

f sin2(⇧)
�
d�2 + cos2 �d⇥2

�
. (6)

This form of the metric matches the CDL form of the metric with ⇤ = H�1
f sin(Hf⇥)

if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)
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Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form
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This form of the metric matches the CDL form of the metric with ⇤ = H�1
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if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)
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Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.
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Figure 6: A cartoon depicting the analytic continuation of a thin-wall instan-
ton. The instanton is cut along the surface denoted by the black disc, which is
then mapped onto the hypersurface indicated in the conformal diagram. The
field values on this hypersurface specify the initial conditions for the lorentzian
evolution of the bubble wall, indicated by the line with an arrow. Depending
on the original phase, this process describes the nucleation of a true or false
vacuum bubble. The zeros of � continue into the forward light cones indicated
by the dashed lines.
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FIG. 1: A Poincare-disc representation of the surface of last scattering inside of our parent bubble. The future light cone of
the collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming in
on the region we have causal access to (inset), the universe will be very close to flat, and the region a�ected by the collision
will have approximate planar symmetry. The region a�ected by the collision will appear as a disc of angular scale 2�c on the
CMB sky.

The disturbance caused by a collision will be stretched by the period of inflation inside of the bubble, although on
scales much larger than the horizon, the amplitude of the associated curvature perturbation will be frozen. Given the
enormous release of energy that is possible in a collision, we assume that these initial fluctuations are large, implying
that the wavelength of the disturbance must be larger than the present horizon size. From the approximate planar
symmetry, a reasonable guess for the form of the Newtonian potential due to the collision is a power series in x,
vanishing at some position x0:

⇥coll =
�
v0 + v1(x� x0) + v2(x� x0)2 + . . .

⇥
�(x� x0), (5)

where the vi are model-dependent constants. This is related to the observed temperature modulation via the Sachs-
Wolfe e⌅ect. There is also a doppler contribution to the temperature modulation due to the fact that the fluid in the
a⌅ected region can have a bulk peculiar velocity with respect to the fluid in the una⌅ected region. Projecting onto
our past light cone, one arrives at a temperature modulation of the form Eq. 4.

This treatment is similar to considering a single super-mode as a possible pre-inflationary relic; the so-called “tilted
universe” scenario [? ? ]. The important distinction in the case of bubble collisions is that the perturbation vanishes
at the causal boundary 1.

It is also possible to go to a gauge where the temperature modulation is derived from the distorted shape of the
surface of last scattering [7, 15]. This is convenient for interpreting the simulations of bubble collisions, where it is
possible to determine how surfaces of constant inflaton field, and thus constant density, are embedded in a specified
background [7]. In Appendix A, we use this picture to derive the temperature modulation caused by a nearly linear
modulation of the surface of last scattering, which is equivalent to the modulation caused by a very long wavelength
perturbation in the Newtonian potential of the form Eq. 5. The modulation function is in this case given by

f(nµ) =

⇧

⌥
4v1

 
1� a(t(0)SLS)1/2

⌦

3tnowH0a(t(0)SLS)3/2
(cos ⇥ � cos ⇥c)�

v1

a(t(0)SLS)
cos ⇥

⌃

��(⇥c � ⇥) (6)

where v1 is the (constant) peculiar velocity of the fluid in the region a⌅ected by the collision, ⇥c is the angular scale
of the collision, a(t(0)SLS) ⇧ 1/1090 is the redshift at last scattering in the unperturbed spacetime, tnow is the current

1 Because the collision entered our past light cone only relatively recently, we will still be comoving with respect to the undisturbed FRW
foliation, and the cancellation of the doppler contribution will not occur as it did in the case of a supermode perturbation [? ? ].
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FIG. 1: A Poincare-disc representation of the surface of last scattering inside of our parent bubble. The future light cone of
the collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming in
on the region we have causal access to (inset), the universe will be very close to flat, and the region a�ected by the collision
will have approximate planar symmetry. The region a�ected by the collision will appear as a disc of angular scale 2�c on the
CMB sky.

The disturbance caused by a collision will be stretched by the period of inflation inside of the bubble, although on
scales much larger than the horizon, the amplitude of the associated curvature perturbation will be frozen. Given the
enormous release of energy that is possible in a collision, we assume that these initial fluctuations are large, implying
that the wavelength of the disturbance must be larger than the present horizon size. From the approximate planar
symmetry, a reasonable guess for the form of the Newtonian potential due to the collision is a power series in x,
vanishing at some position x0:

⇥coll =
�
v0 + v1(x� x0) + v2(x� x0)2 + . . .

⇥
�(x� x0), (5)

where the vi are model-dependent constants. This is related to the observed temperature modulation via the Sachs-
Wolfe e⌅ect. There is also a doppler contribution to the temperature modulation due to the fact that the fluid in the
a⌅ected region can have a bulk peculiar velocity with respect to the fluid in the una⌅ected region. Projecting onto
our past light cone, one arrives at a temperature modulation of the form Eq. 4.

This treatment is similar to considering a single super-mode as a possible pre-inflationary relic; the so-called “tilted
universe” scenario [? ? ]. The important distinction in the case of bubble collisions is that the perturbation vanishes
at the causal boundary 1.

It is also possible to go to a gauge where the temperature modulation is derived from the distorted shape of the
surface of last scattering [7, 15]. This is convenient for interpreting the simulations of bubble collisions, where it is
possible to determine how surfaces of constant inflaton field, and thus constant density, are embedded in a specified
background [7]. In Appendix A, we use this picture to derive the temperature modulation caused by a nearly linear
modulation of the surface of last scattering, which is equivalent to the modulation caused by a very long wavelength
perturbation in the Newtonian potential of the form Eq. 5. The modulation function is in this case given by

f(nµ) =
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where v1 is the (constant) peculiar velocity of the fluid in the region a⌅ected by the collision, ⇥c is the angular scale
of the collision, a(t(0)SLS) ⇧ 1/1090 is the redshift at last scattering in the unperturbed spacetime, tnow is the current

1 Because the collision entered our past light cone only relatively recently, we will still be comoving with respect to the undisturbed FRW
foliation, and the cancellation of the doppler contribution will not occur as it did in the case of a supermode perturbation [? ? ].

Symmetry+causality: effects confined to a disc. 
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FIG. 1: A Poincare-disc representation of the surface of last scattering inside of our parent bubble. The future light cone of
the collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming in
on the region we have causal access to (inset), the universe will be very close to flat, and the region a�ected by the collision
will have approximate planar symmetry. The region a�ected by the collision will appear as a disc of angular scale 2�c on the
CMB sky.

The disturbance caused by a collision will be stretched by the period of inflation inside of the bubble, although on
scales much larger than the horizon, the amplitude of the associated curvature perturbation will be frozen. Given the
enormous release of energy that is possible in a collision, we assume that these initial fluctuations are large, implying
that the wavelength of the disturbance must be larger than the present horizon size. From the approximate planar
symmetry, a reasonable guess for the form of the Newtonian potential due to the collision is a power series in x,
vanishing at some position x0:

⇥coll =
�
v0 + v1(x� x0) + v2(x� x0)2 + . . .

⇥
�(x� x0), (5)

where the vi are model-dependent constants. This is related to the observed temperature modulation via the Sachs-
Wolfe e⌅ect. There is also a doppler contribution to the temperature modulation due to the fact that the fluid in the
a⌅ected region can have a bulk peculiar velocity with respect to the fluid in the una⌅ected region. Projecting onto
our past light cone, one arrives at a temperature modulation of the form Eq. 4.

This treatment is similar to considering a single super-mode as a possible pre-inflationary relic; the so-called “tilted
universe” scenario [? ? ]. The important distinction in the case of bubble collisions is that the perturbation vanishes
at the causal boundary 1.

It is also possible to go to a gauge where the temperature modulation is derived from the distorted shape of the
surface of last scattering [7, 15]. This is convenient for interpreting the simulations of bubble collisions, where it is
possible to determine how surfaces of constant inflaton field, and thus constant density, are embedded in a specified
background [7]. In Appendix A, we use this picture to derive the temperature modulation caused by a nearly linear
modulation of the surface of last scattering, which is equivalent to the modulation caused by a very long wavelength
perturbation in the Newtonian potential of the form Eq. 5. The modulation function is in this case given by
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where v1 is the (constant) peculiar velocity of the fluid in the region a⌅ected by the collision, ⇥c is the angular scale
of the collision, a(t(0)SLS) ⇧ 1/1090 is the redshift at last scattering in the unperturbed spacetime, tnow is the current

1 Because the collision entered our past light cone only relatively recently, we will still be comoving with respect to the undisturbed FRW
foliation, and the cancellation of the doppler contribution will not occur as it did in the case of a supermode perturbation [? ? ].
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FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (� = 0).

crit!�

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the
collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming
in on the region we have causal access to (inset), the universe is very close to flat, and the region a�ected by the collision has
approximate planar symmetry. The region a�ected by the collision appears as a disc of angular radius �crit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the e⇤ects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as

⇥coll = ⇥(a)
�
c̄0 + c̄1(x� xcrit) +O((x� xcrit)

2)
⇥
�(x� xcrit), (6)

Feeney, MCJ, Mortlock, Peiris
Chang, Kleban, Levi

f : analytic arguments and numerics
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FIG. 1: A Poincare-disc representation of the surface of last scattering inside of our parent bubble. The future light cone of
the collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming in
on the region we have causal access to (inset), the universe will be very close to flat, and the region a�ected by the collision
will have approximate planar symmetry. The region a�ected by the collision will appear as a disc of angular scale 2�c on the
CMB sky.

The disturbance caused by a collision will be stretched by the period of inflation inside of the bubble, although on
scales much larger than the horizon, the amplitude of the associated curvature perturbation will be frozen. Given the
enormous release of energy that is possible in a collision, we assume that these initial fluctuations are large, implying
that the wavelength of the disturbance must be larger than the present horizon size. From the approximate planar
symmetry, a reasonable guess for the form of the Newtonian potential due to the collision is a power series in x,
vanishing at some position x0:

⇥coll =
�
v0 + v1(x� x0) + v2(x� x0)2 + . . .

⇥
�(x� x0), (5)

where the vi are model-dependent constants. This is related to the observed temperature modulation via the Sachs-
Wolfe e⌅ect. There is also a doppler contribution to the temperature modulation due to the fact that the fluid in the
a⌅ected region can have a bulk peculiar velocity with respect to the fluid in the una⌅ected region. Projecting onto
our past light cone, one arrives at a temperature modulation of the form Eq. 4.

This treatment is similar to considering a single super-mode as a possible pre-inflationary relic; the so-called “tilted
universe” scenario [? ? ]. The important distinction in the case of bubble collisions is that the perturbation vanishes
at the causal boundary 1.

It is also possible to go to a gauge where the temperature modulation is derived from the distorted shape of the
surface of last scattering [7, 15]. This is convenient for interpreting the simulations of bubble collisions, where it is
possible to determine how surfaces of constant inflaton field, and thus constant density, are embedded in a specified
background [7]. In Appendix A, we use this picture to derive the temperature modulation caused by a nearly linear
modulation of the surface of last scattering, which is equivalent to the modulation caused by a very long wavelength
perturbation in the Newtonian potential of the form Eq. 5. The modulation function is in this case given by

f(nµ) =

⇧

⌥
4v1

 
1� a(t(0)SLS)1/2

⌦

3tnowH0a(t(0)SLS)3/2
(cos ⇥ � cos ⇥c)�

v1

a(t(0)SLS)
cos ⇥

⌃

��(⇥c � ⇥) (6)

where v1 is the (constant) peculiar velocity of the fluid in the region a⌅ected by the collision, ⇥c is the angular scale
of the collision, a(t(0)SLS) ⇧ 1/1090 is the redshift at last scattering in the unperturbed spacetime, tnow is the current

1 Because the collision entered our past light cone only relatively recently, we will still be comoving with respect to the undisturbed FRW
foliation, and the cancellation of the doppler contribution will not occur as it did in the case of a supermode perturbation [? ? ].

surface of last scattering

Symmetry+causality: effects confined to a disc. 
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total number is given by

N ⌅ 4⌅⇥

3H4
F

�
H2

F

H2
I

⇥
⇤o. (44)

• The total counts given in Eqs. 43 and 44 include
many collisions that encompass the entire CMB
sky, where the null shell of collision debris does not
intersect the visible portion of the surface of last
scattering. In fact, the vast majority of the diver-
gent number of expected collisions in Eq. 44 are of
this type. If we only count collisions that do not
encompass the entire CMB sky, the relevant four-
volume is shown in the left panel of Fig. 12. Note
that the region near past infinity at large boost
is no longer included, which implies that the posi-
tion of the observer inside of the bubble is largely
irrelevant and the divergent number of early-time
bubbles is not counted. This disappearance of the
dependence on the initial value surface was termed
by FKNS as the ‘disappearance of the persistence
of memory.’ In Appendix D1, we calculate the ex-
pected number of collisions to be (in the small ⇤ls

limit)

N ⌅ 16⌅⇥

3H4
F

�
H2

F

H2
I

⇥ ⇤
�c (45)

• An alternative criteria, employed by FKNS, is to
forbid any bubbles for which the post-collision do-
main wall crosses the (putative) worldline of the
observer. Assuming that the domain wall travels
into the bubble for an inflationary Hubble time,
and then accelerates outward, the relevant four-
volume is sketched in the right panel of Fig. 12.
The number of collisions satisfying this criteria is
given roughly by Eq. 45 up to factors of order unity
(again in the small ⇤ls limit).

3. Angular scale distribution

While the number of nucleations to the past is impor-
tant, equally vital is the area on the observer’s sky that
might be a⇥ected by the collision: solid angles too close
to 0 are clearly bad news, and bubbles covering 4⌅ might
be interesting, but might also be invisible if the whole
sky is e⇥ectively seeing just a tiny (and hence poten-
tially homogeneous) part of the full collision spacetime.
In Sec. IV A, we provided a formula (Eq. 33) relating the
nucleation site of a colliding bubble to the observed an-
gular scale on a surface of constant ⇧ . Using the volume
element Eq. D1 and the available nucleation four-volume
described in the previous section, we can calculate the
statistical distribution of observed angular scales on, for
example, the CMB sky. The detailed calculation is given
in Appendix D 2; we summarize key results here.

• In general, the angular distribution depends upon
the nucleation direction �n, ⌃n, the comoving ra-
dius ⇤ls ⇥ ⇤reh out to which the observer can see on
the surface of last scattering, the false and true vac-
uum Hubble constants HF and HI , and the number
Ne of inflationary e-foldings inside the observation
bubble.

• We can gain some intuition by comparing the map
of angular scales in Fig. 8 to Figs. 11 and 12 depict-
ing the relevant nucleation regions. The distribu-
tion will have strong support at some angular scale
if the corresponding map region overlaps with an al-
lowed nucleation region of large four-volume. In the
limit where ⇤ls is very small, the map is quite com-
pressed, and each range of angular scales receives a
nearly equal contribution. We therefore expect the
angular scale distribution to be rather flat in this
case. Considering larger ⇤ls, regions near to future
infinity (for all ⇤o) and past infinity (in the case
where the observer is at large ⇤o) are on the map’s
boundaries near ⌥ ⇥ 0 and, depending on the view-
ing angle, ⌥ ⇥ 2⌅. For large ⇤ls, there should then
be a bimodal distribution strongly peaked around
small and large angular scales 8. The peak about
⌥ ⇥ 0 will be isotropic, and the peak about ⌥ ⇥ 2⌅
will be anisotropic and maximized about �o = 0. If
the ratio HF /HI is large, then the peak near ⌥ ⇥ 0
will be larger than the peak near ⌥ ⇥ 2⌅ because
more volume is included near future infinity than
past infinity, leading to a bias for small scale colli-
sions.

• As discussed in Sec. II, for a realistic cosmology in-
side of the bubble ⇤ls is rather small. In Fig. 13,
we show the numerically computed distribution
function normalized by ⇥H�4

F for the case where
Ne = 70, ⇤ls = {.05, .08, .1}, HF

HI
= 10, �o = 0, and

⇤o ⇤⇧. Choosing di⇥erent observation angles has
little e⇥ect on the shape of the distribution func-
tion, meaning that the observed bubbles will be
distributed fairly isotropically. In accord with our
expectations, the distribution is rather flat, and ap-
proaches

dN

d⌥d(cos �n)d⌃n
⇥ ⇥H�4

F

�
HF

HI

⇥2

⇤ls sin
�

⌥

2

⇥
. (46)

in the limit where ⇤ls ⇤ 0. It can be seen from
the numerical distribution that this is a good as-
sumption for ⇤ls

<⇥ 0.05. This distribution was first
derived by FKNS using di⇥erent methods.

8 Recall from the previous subsection that at small �ls, the major-
ity of collisions to the past of an observer cover the whole sky.
As �ls increases, more of these bubbles are included in the count,
leading to the peak around large angular scales.
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FIG. 12: In the left panel, we shade the four-volume from which colliding bubbles can produce e�ects that do not encompass
the entire CMB sky. This is found by tracing back null rays from the visible portion of the surface of last scattering into
the false vacuum (see Appendix D1 for the quantitative details). Note that the four-volume to the future of the initial value
surface near past-infinity is now excluded, regulating the divergent number of expected collisions at large ⇤o. In the right panel,
the four-volume satisfying the criteria outlined in Ref. [29] is shaded. Here, any collisions that could produce a post-collision
domain wall intersecting the origin are excluded. One such collision is depicted by the green line with arrows. Again, the
potentially allowed four-volume near past infinity is regulated.

• As ⇥ls is increased, the distribution changes as
shown in Fig. 14. As expected from the discussion
above, when HF

HI
is O(1), the distribution becomes

bimodal in the limit of large ⇥o due to the inclu-
sion of an equal amount of four-volume near past
and future infinity (left panel of Fig. 14). For large
HF
HI

, there is more four-volume near future infinity,
weighting the distribution towards small angular
scales. The peaking of the distribution near ⇧ ⇥ 0
and possibly ⇧ ⇥ 2⇤ is directly related to the abil-
ity to view approximately one curvature radius on
some early-⌅ surface. A similar bimodal distribu-
tion function was found in AJS for the angular scale
of collisions on the bubble wall. Those results can
be reproduced from the analysis in this section by
taking the appropriate limit where ⌅view ⇤ 0.

4. Statistical distribution of zc

In Sec. III A we defined zc, the value of z (in the co-
ordinates of Eq. 15, in the collision frame) at which the
bubbles first collide. Under the assumptions and approx-
imations we employ, this is the sole parameter – beyond
those determined by the inflaton potential and other mi-
crophysics – that determines the resulting collision space-
time. The quantity zc is directly related to the (boost)
invariant separation of the nucleation centers of the bub-
bles, which (in the small-bubble approximation) is sim-
ply given by the value of � at which the colliding bubble
nucleates. Therefore, in just the same manner as the
derivation of the angular scale distribution, we can find
the distribution in zc by integrating the volume element.

This analysis was performed in AJ, and we refer the
reader there for further details. Changing variables to zc,
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and generalizing the treatment in AJ to include only colli-
sions intersecting the observable portion of the surface of
last scattering (this makes little di⇥erence for the shape of
the distribution), we show the numerically calculated dis-
tribution function for N = 70, HF

HI
= 10, �o = 0, ⇥o ⇤⌅,

and ⇥ls = 0.05 in Fig. 15. The distribution peaks around
zc ⇥ H�1

F , and falls o⇥ quickly at large zc: a quantitative
examination of the distribution (after straightforward al-
gabraic manipulations of the expressions in AJ) shows

•Counting only collisions whose disc of influence is smaller than the 
whole sky:
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also Kleban et. al.
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total number is given by

N ⌅ 4⌅⇥

3H4
F

�
H2

F

H2
I

⇥
⇤o. (44)

• The total counts given in Eqs. 43 and 44 include
many collisions that encompass the entire CMB
sky, where the null shell of collision debris does not
intersect the visible portion of the surface of last
scattering. In fact, the vast majority of the diver-
gent number of expected collisions in Eq. 44 are of
this type. If we only count collisions that do not
encompass the entire CMB sky, the relevant four-
volume is shown in the left panel of Fig. 12. Note
that the region near past infinity at large boost
is no longer included, which implies that the posi-
tion of the observer inside of the bubble is largely
irrelevant and the divergent number of early-time
bubbles is not counted. This disappearance of the
dependence on the initial value surface was termed
by FKNS as the ‘disappearance of the persistence
of memory.’ In Appendix D1, we calculate the ex-
pected number of collisions to be (in the small ⇤ls

limit)

N ⌅ 16⌅⇥

3H4
F

�
H2

F

H2
I

⇥ ⇤
�c (45)

• An alternative criteria, employed by FKNS, is to
forbid any bubbles for which the post-collision do-
main wall crosses the (putative) worldline of the
observer. Assuming that the domain wall travels
into the bubble for an inflationary Hubble time,
and then accelerates outward, the relevant four-
volume is sketched in the right panel of Fig. 12.
The number of collisions satisfying this criteria is
given roughly by Eq. 45 up to factors of order unity
(again in the small ⇤ls limit).

3. Angular scale distribution

While the number of nucleations to the past is impor-
tant, equally vital is the area on the observer’s sky that
might be a⇥ected by the collision: solid angles too close
to 0 are clearly bad news, and bubbles covering 4⌅ might
be interesting, but might also be invisible if the whole
sky is e⇥ectively seeing just a tiny (and hence poten-
tially homogeneous) part of the full collision spacetime.
In Sec. IV A, we provided a formula (Eq. 33) relating the
nucleation site of a colliding bubble to the observed an-
gular scale on a surface of constant ⇧ . Using the volume
element Eq. D1 and the available nucleation four-volume
described in the previous section, we can calculate the
statistical distribution of observed angular scales on, for
example, the CMB sky. The detailed calculation is given
in Appendix D 2; we summarize key results here.

• In general, the angular distribution depends upon
the nucleation direction �n, ⌃n, the comoving ra-
dius ⇤ls ⇥ ⇤reh out to which the observer can see on
the surface of last scattering, the false and true vac-
uum Hubble constants HF and HI , and the number
Ne of inflationary e-foldings inside the observation
bubble.

• We can gain some intuition by comparing the map
of angular scales in Fig. 8 to Figs. 11 and 12 depict-
ing the relevant nucleation regions. The distribu-
tion will have strong support at some angular scale
if the corresponding map region overlaps with an al-
lowed nucleation region of large four-volume. In the
limit where ⇤ls is very small, the map is quite com-
pressed, and each range of angular scales receives a
nearly equal contribution. We therefore expect the
angular scale distribution to be rather flat in this
case. Considering larger ⇤ls, regions near to future
infinity (for all ⇤o) and past infinity (in the case
where the observer is at large ⇤o) are on the map’s
boundaries near ⌥ ⇥ 0 and, depending on the view-
ing angle, ⌥ ⇥ 2⌅. For large ⇤ls, there should then
be a bimodal distribution strongly peaked around
small and large angular scales 8. The peak about
⌥ ⇥ 0 will be isotropic, and the peak about ⌥ ⇥ 2⌅
will be anisotropic and maximized about �o = 0. If
the ratio HF /HI is large, then the peak near ⌥ ⇥ 0
will be larger than the peak near ⌥ ⇥ 2⌅ because
more volume is included near future infinity than
past infinity, leading to a bias for small scale colli-
sions.

• As discussed in Sec. II, for a realistic cosmology in-
side of the bubble ⇤ls is rather small. In Fig. 13,
we show the numerically computed distribution
function normalized by ⇥H�4

F for the case where
Ne = 70, ⇤ls = {.05, .08, .1}, HF

HI
= 10, �o = 0, and

⇤o ⇤⇧. Choosing di⇥erent observation angles has
little e⇥ect on the shape of the distribution func-
tion, meaning that the observed bubbles will be
distributed fairly isotropically. In accord with our
expectations, the distribution is rather flat, and ap-
proaches

dN

d⌥d(cos �n)d⌃n
⇥ ⇥H�4

F

�
HF

HI

⇥2

⇤ls sin
�

⌥

2

⇥
. (46)

in the limit where ⇤ls ⇤ 0. It can be seen from
the numerical distribution that this is a good as-
sumption for ⇤ls

<⇥ 0.05. This distribution was first
derived by FKNS using di⇥erent methods.

8 Recall from the previous subsection that at small �ls, the major-
ity of collisions to the past of an observer cover the whole sky.
As �ls increases, more of these bubbles are included in the count,
leading to the peak around large angular scales.
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FIG. 12: In the left panel, we shade the four-volume from which colliding bubbles can produce e�ects that do not encompass
the entire CMB sky. This is found by tracing back null rays from the visible portion of the surface of last scattering into
the false vacuum (see Appendix D1 for the quantitative details). Note that the four-volume to the future of the initial value
surface near past-infinity is now excluded, regulating the divergent number of expected collisions at large ⇤o. In the right panel,
the four-volume satisfying the criteria outlined in Ref. [29] is shaded. Here, any collisions that could produce a post-collision
domain wall intersecting the origin are excluded. One such collision is depicted by the green line with arrows. Again, the
potentially allowed four-volume near past infinity is regulated.

• As ⇥ls is increased, the distribution changes as
shown in Fig. 14. As expected from the discussion
above, when HF

HI
is O(1), the distribution becomes

bimodal in the limit of large ⇥o due to the inclu-
sion of an equal amount of four-volume near past
and future infinity (left panel of Fig. 14). For large
HF
HI

, there is more four-volume near future infinity,
weighting the distribution towards small angular
scales. The peaking of the distribution near ⇧ ⇥ 0
and possibly ⇧ ⇥ 2⇤ is directly related to the abil-
ity to view approximately one curvature radius on
some early-⌅ surface. A similar bimodal distribu-
tion function was found in AJS for the angular scale
of collisions on the bubble wall. Those results can
be reproduced from the analysis in this section by
taking the appropriate limit where ⌅view ⇤ 0.

4. Statistical distribution of zc

In Sec. III A we defined zc, the value of z (in the co-
ordinates of Eq. 15, in the collision frame) at which the
bubbles first collide. Under the assumptions and approx-
imations we employ, this is the sole parameter – beyond
those determined by the inflaton potential and other mi-
crophysics – that determines the resulting collision space-
time. The quantity zc is directly related to the (boost)
invariant separation of the nucleation centers of the bub-
bles, which (in the small-bubble approximation) is sim-
ply given by the value of � at which the colliding bubble
nucleates. Therefore, in just the same manner as the
derivation of the angular scale distribution, we can find
the distribution in zc by integrating the volume element.

This analysis was performed in AJ, and we refer the
reader there for further details. Changing variables to zc,
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and generalizing the treatment in AJ to include only colli-
sions intersecting the observable portion of the surface of
last scattering (this makes little di⇥erence for the shape of
the distribution), we show the numerically calculated dis-
tribution function for N = 70, HF

HI
= 10, �o = 0, ⇥o ⇤⌅,

and ⇥ls = 0.05 in Fig. 15. The distribution peaks around
zc ⇥ H�1

F , and falls o⇥ quickly at large zc: a quantitative
examination of the distribution (after straightforward al-
gabraic manipulations of the expressions in AJ) shows

•Counting only collisions whose disc of influence is smaller than the 
whole sky:
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FIG. 12: In the left panel, we shade the four-volume from which colliding bubbles can produce e�ects that do not encompass
the entire CMB sky. This is found by tracing back null rays from the visible portion of the surface of last scattering into
the false vacuum (see Appendix D1 for the quantitative details). Note that the four-volume to the future of the initial value
surface near past-infinity is now excluded, regulating the divergent number of expected collisions at large ⇤o. In the right panel,
the four-volume satisfying the criteria outlined in Ref. [29] is shaded. Here, any collisions that could produce a post-collision
domain wall intersecting the origin are excluded. One such collision is depicted by the green line with arrows. Again, the
potentially allowed four-volume near past infinity is regulated.

• As ⇥ls is increased, the distribution changes as
shown in Fig. 14. As expected from the discussion
above, when HF

HI
is O(1), the distribution becomes

bimodal in the limit of large ⇥o due to the inclu-
sion of an equal amount of four-volume near past
and future infinity (left panel of Fig. 14). For large
HF
HI

, there is more four-volume near future infinity,
weighting the distribution towards small angular
scales. The peaking of the distribution near ⇧ ⇥ 0
and possibly ⇧ ⇥ 2⇤ is directly related to the abil-
ity to view approximately one curvature radius on
some early-⌅ surface. A similar bimodal distribu-
tion function was found in AJS for the angular scale
of collisions on the bubble wall. Those results can
be reproduced from the analysis in this section by
taking the appropriate limit where ⌅view ⇤ 0.

4. Statistical distribution of zc

In Sec. III A we defined zc, the value of z (in the co-
ordinates of Eq. 15, in the collision frame) at which the
bubbles first collide. Under the assumptions and approx-
imations we employ, this is the sole parameter – beyond
those determined by the inflaton potential and other mi-
crophysics – that determines the resulting collision space-
time. The quantity zc is directly related to the (boost)
invariant separation of the nucleation centers of the bub-
bles, which (in the small-bubble approximation) is sim-
ply given by the value of � at which the colliding bubble
nucleates. Therefore, in just the same manner as the
derivation of the angular scale distribution, we can find
the distribution in zc by integrating the volume element.

This analysis was performed in AJ, and we refer the
reader there for further details. Changing variables to zc,
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FIG. 13: The distribution function Eq. D16 normalized by
⇥H�4

F . We chose the parameters Ne = 70, HF
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and ⇤o � ⇥ with ⇤ls = .05 shown in red (bottom), ⇤ls = .08
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and generalizing the treatment in AJ to include only colli-
sions intersecting the observable portion of the surface of
last scattering (this makes little di⇥erence for the shape of
the distribution), we show the numerically calculated dis-
tribution function for N = 70, HF

HI
= 10, �o = 0, ⇥o ⇤⌅,

and ⇥ls = 0.05 in Fig. 15. The distribution peaks around
zc ⇥ H�1

F , and falls o⇥ quickly at large zc: a quantitative
examination of the distribution (after straightforward al-
gabraic manipulations of the expressions in AJ) shows

•The collisions are very nearly 
isotropic, and the distribution of disc 
sizes on the CMB sky relatively flat:
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• The model:

False Vacuum

True or False Vacuum

Vacuum

True

Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form

ds2 = H�2
f d⇧2 + H�2

f sin2(⇧)
�
d�2 + cos2 �d⇥2

�
. (6)

This form of the metric matches the CDL form of the metric with ⇤ = H�1
f sin(Hf⇥)

if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)

ẋ(s = smax) = 0 (8)

E ' uT,F (9)

V (⇧) (10)

5

True

True or VacuumFalse

False Vacuum

Vacuum

Figure 6: A cartoon depicting the analytic continuation of a thin-wall instan-
ton. The instanton is cut along the surface denoted by the black disc, which is
then mapped onto the hypersurface indicated in the conformal diagram. The
field values on this hypersurface specify the initial conditions for the lorentzian
evolution of the bubble wall, indicated by the line with an arrow. Depending
on the original phase, this process describes the nucleation of a true or false
vacuum bubble. The zeros of � continue into the forward light cones indicated
by the dashed lines.

⇤ (11)

SI = �
�

d4x
⇥

gV (⇤(x)) (12)

SBG = �
�

d4x
⇥

gV (⇤(xturnpt)) (13)

⇥ = i

�
dtpq̇ = i

�
dt [LE � Lturnpt] (14)

�1

�2
=

e��1/h̄

�⇥2/h̄
= e�SE/h̄ (15)
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Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.
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Figure 6: A cartoon depicting the analytic continuation of a thin-wall instan-
ton. The instanton is cut along the surface denoted by the black disc, which is
then mapped onto the hypersurface indicated in the conformal diagram. The
field values on this hypersurface specify the initial conditions for the lorentzian
evolution of the bubble wall, indicated by the line with an arrow. Depending
on the original phase, this process describes the nucleation of a true or false
vacuum bubble. The zeros of � continue into the forward light cones indicated
by the dashed lines.
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ẋ(s = smax) = 0 (8)

E ' uT,F (9)

V (⇧) (10)

5

True

True or VacuumFalse

False Vacuum

Vacuum

Figure 6: A cartoon depicting the analytic continuation of a thin-wall instan-
ton. The instanton is cut along the surface denoted by the black disc, which is
then mapped onto the hypersurface indicated in the conformal diagram. The
field values on this hypersurface specify the initial conditions for the lorentzian
evolution of the bubble wall, indicated by the line with an arrow. Depending
on the original phase, this process describes the nucleation of a true or false
vacuum bubble. The zeros of � continue into the forward light cones indicated
by the dashed lines.

⇤ (11)

SI = �
�

d4x
⇥

gV (⇤(x)) (12)

SBG = �
�

d4x
⇥

gV (⇤(xturnpt)) (13)

⇥ = i

�
dtpq̇ = i

�
dt [LE � Lturnpt] (14)

�1

�2
=

e��1/h̄

�⇥2/h̄
= e�SE/h̄ (15)

6

...

Bubble collisions model

Thursday, 4 July, 13



generic signature• The model:

False Vacuum

True or False Vacuum

Vacuum

True

Figure 5: This conformal diagram sums up Figures 1 and 2. The bottom part of
the diagram defines the background spacetime: true or false vacuum. In some
sense, two bubbles are nucleated at t = 0 (horizontal line), one of true and one
of false vacuum. These can be viewed as two ”bubbles” because there is an
origin inside each of the regions of true or false vacuum. The bubble whose
phase matches that of the background is really just a piece of the background
which remains una⇤ected by the nucleation event.

yields a metric of the form

ds2 = H�2
f d⇧2 + H�2

f sin2(⇧)
�
d�2 + cos2 �d⇥2

�
. (6)

This form of the metric matches the CDL form of the metric with ⇤ = H�1
f sin(Hf⇥)

if the ⌃ coordinate is analytically continued

x(s = 0) = x0 (7)
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Collisions (exaggerated) + CMB + instrumental noise
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Collisions (realistic) + CMB + instrumental noise
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Collisions (realistic) + CMB + instrumental noise

Does the data prefer a theory with collisions?
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• Lambda-CDM: very successful at describing the CMB power 
spectrum.

WMAP 7-year 
data

Searching for collisions Feeney, MCJ, Mortlock, Peiris
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• Bayesian model selection: does one model fit the data better than 
another?

• Lambda-CDM: very successful at describing the CMB power 
spectrum.

WMAP 7-year 
data

• Are there anomalies?

• Frequentist statistics: how discrepant is the data assuming the null 
hypothesis?

Searching for collisions Feeney, MCJ, Mortlock, Peiris
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P (Model,� | data)

Bayesian statistics

•The goal:

P (Model,� | data) = P (�)P (data |Model,�)

P (data |Model)

•Bayes’ Theorem:

Z
P (�)d� = 1

P (data |Model)

P (�)

P (data |Model,�)

P (data |Model) =

Z
d�P (�)P (data |Model,�)

•Theory prior:

•Evidence (model averaged likelihood):

•Likelihood:

How should I bet?
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Bayesian statistics
•The likelihood is used to quantify how consistent data is with a set of 

model parameters.
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model parameters.

exclusion plots

•This does NOT tell us how we should rank competing theories trying to describe 
the same data. 
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P (data |Model,�)

Bayesian statistics
•The likelihood is used to quantify how consistent data is with a set of 

model parameters.

exclusion plots

•This does NOT tell us how we should rank competing theories trying to describe 
the same data. 

•To do so, we can apply Bayes’ theorem at the level of Models:

P (Model | data) = P (Model)P (data |Model)

P (data)
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Bayesian model selection

•Let’s say I have a model that fits the data fairly well, should I introduce 
a more complicated model that might fit it even better?
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Bayesian model selection

•Let’s say I have a model that fits the data fairly well, should I introduce 
a more complicated model that might fit it even better?

P (Model 1 | data)
P (Model 0 | data) =

P (Model 1)P (data |Model 1)

P (Model 0)P (data |Model 0)

=

P (data |Model 1)

P (data |Model 0)

•We can decide by looking at the evidence ratio:

Thursday, 4 July, 13



Bayesian model selection

•Let’s say I have a model that fits the data fairly well, should I introduce 
a more complicated model that might fit it even better?

P (Model 1 | data)
P (Model 0 | data) =

P (Model 1)P (data |Model 1)

P (Model 0)P (data |Model 0)

=

P (data |Model 1)

P (data |Model 0)

•We can decide by looking at the evidence ratio:

•The evidence naturally implements Occam’s razor: the simpler model should be 
favored. Tension between volume of parameter space and goodness of fit.

P (data |Model) =

Z
d�P (�)P (data |Model,�)
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Pr(Model 1|data)
Pr(Model 2|data) =

Pr(Model 1)

Pr(Model 2)

Pr(data|Model 1)

Pr(data|Model 2)

Is This Significant?

15

That process involves a posteriori choices that amplify
the apparent significance of the feature.
Shortly after the WMAP sky maps became avail-

able, one of the authors (L.P.) noted that the initials
of Stephen Hawking appear in the temperature map, as
seen in Figure 17. Both the “S” and “H” are beautifully
vertical in Galactic coordinates, spaced consistently just
above the b = 0 line. We pose the question, what is the
probability of this occurrence? It is certainly infinitesi-
mal; in fact, much less likely than several claimed cos-
mological anomalies. Yet, we do not take this anomaly
seriously because it is silly. The Stephen Hawking ini-
tials highlight the problem with a posteriori statistics.
By looking at a rich data set in multiple different ways,
unlikely events are expected. The search for statistical
oddities must be viewed differently from tests of pre-
determined hypotheses. The data have the power to
support hypothesis testing rooted in ideas that are in-
dependent of the WMAP data. We can ask which of
two well-posed theoretical ideas is best supported by the
data. Much of the WMAP analysis happens in a dif-
ferent context asking, “What oddities can I find in the
data?”

Figure 17. “SH” initials of Stephen Hawking are shown in the
ILC sky map. The “S” and “H” are in roughly the same font size
and style, and both letters are aligned neatly along a line of fixed
Galactic latitude. A calculation would show that the probability
of this particular occurrence is vanishingly small. Yet, there is no
case to made for a non-standard cosmology despite this extraordi-
narily low probability event. It is clear that the combined selection
of looking for initials, these particular initials, and their alignment
and location are all a posteriori choices. For a rich data set, as is
the case with WMAP , there are a lot of data and a lot of ways
of analyzing the data. Low probability events are guaranteed to
occur. The a posteriori assignment of a likelihood for a particular
event detected, especially when the detection of that event is “op-
timized” for maximum effect by analysis choices, does not result
in a fair unbiased assessment. This is a recurrent issue with CMB
data analysis and is often a tricky issue and one that is difficult to
overcome.

For example, no one had predicted that low-l multi-
poles might be aligned. Rather, this followed from look-
ing into the statistical properties of the maps. Simu-
lations, both by the WMAP team and others, agree
that this is a highly unusual occurrence for the standard
ΛCDM cosmology. Yet, a large fraction of simulated
skies will likely have some kind of oddity. The key is
whether the oddity is specified in advance.
The search for oddities in the data is essential for test-

ing the model. The success of the model makes these
searches even more important. A detection of any highly
significant a posteriori feature could become a serious
challenge for the model. The less significant features dis-
cussed in this paper provided the motivation for consid-
ering alternative models and developing new analysis of

WMAP (and soon Planck) data. The oddities have trig-
gered proposed new observations that can further test
the models.
It is often difficult to assess the statistical claims. It

may well be that an oddity could be found that mo-
tivates a new theory, which then could be tested as a
hypothesis against ΛCDM. The data support these com-
parisons. Of course, other cosmological measurements
must also play a role in testing new hypotheses. No
CMB anomaly reported to date has caused the scientific
community to adopt a new standard model of cosmol-
ogy, but claimed anomalies have been used to provoke
thought and to search for improved theories.
We find that Cold Spot I does not result from Galactic

foregrounds, but rather forms the northernmost part of
one of four cool “fingers” in the southern sky. Its am-
plitude and extent are not unusual for ΛCDM. In fact,
structures with this nature are expected.
We find that Cold Spot II is at the southernmost end

of a different one of the southern fingers, and it has been
shown not to be an anomalous fluctuation.
We find that the amplitude of the l = 2 quadrupole

component is not anomalously low, but well within the
95% confidence range.
We conclude that there is no lack of large-scale CMB

power over the full WMAP sky. The low value of the
S-statistic integral over the large-angle correlation func-
tion on the cut sky results from a posterior choice of a
sub-optimal (i.e., not full sky) statistic, S1/2, a chance
alignment of the Galactic plane cut with CMB signal,
and a chance alignment of primary CMB fluctuation fea-
tures with secondary ISW features from the local density
distribution.
We find that the quadrupole and octupole are aligned

to a remarkable degree, but that this alignment is not due
to a single feature in the map or even a pair of features.
The alignment does not appear to be due to a void, for
example. We find that the alignment is intimately associ-
ated with the fingers of the large-scale anisotropy visible
in the southern sky, and it results from the statistical
combination of fluctuations over the full sky. There is
also evidence that the alignment is due, in part, to a co-
incidental alignment of the primary anisotropy with the
secondary anisotropy from the local density distribution
through the ISW effect. At the present time the remark-
able degree of alignment appears to be no more than a
chance occurrence, discovered a posteriori with no mo-
tivating theory. A new compelling theory could change
this conclusion.
There is a portion of the power spectrum where there is

a marginally significant lack of odd multipole power rel-
ative to even multipole power, but overall the WMAP
data are well fit by the ΛCDM model. There is no sys-
tematic error that we are aware of that could cause the
even power excess, nor are there any cosmological effects
that would do so. We conclude that the even excess is
likely a statistical fluctuation that was found a posteriori.
No motivating theory for this phenomenon is known.
We find that claims of hemispherical and/or dipole

asymmetries have suffered from a posteriori choices. Af-
ter carrying out an analysis in a manner that avoids a
posteriori bias, we find that the evidence for a hemispher-
ical power asymmetry is weak.
Evidence has been reported for a significant quadrupo-

• Model 1: Lambda CDM.

• Model 2: Stephen Hawking’s creation, signed copy.
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Pr(Model 1|Data)

Pr(Model 2|Data)

Searching for collisions

• What any good Bayesian wants:

How should I bet?

�CDM Pr(Ns,m)

+
�CDM

VS
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Pr(Model 1|Data)

Pr(Model 2|Data)

Searching for collisions

• What any good Bayesian wants:

How should I bet?

�CDM Pr(Ns,m)

+
�CDM

VS

• A convenient theory label:       .             is specified by              .     N̄s N̄s = 0

The expected number of detectable 
features.

�CDM
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FIG. 19. The full posterior Pr(N̄s|Nb, fsky) (Eq. A16) that would be obtained from a conclusive detection (i.e., �bs � 1) of
Nb = 0, 2, 4 (solid, dashed, and dot-dashed curves) blobs containing bubble collisions assuming fsky = 0.7. The presence of a
sky cut skews the distribution towards N̄s > Nb. Note that even when features are conclusively detected, there is an intrinsic
uncertainty in N̄s; this is a form of cosmic variance.

2. Analysis of candidate bubble collision patches

At the heart of the above formalism for assessing the full posterior for N̄s is the evaluation of the patch likelihood
for a single collision, Pr(db|m, 1). Here the data, db, are the measured temperature values of the pixels in the vicinity
of the detected blob that are not in the sky cut. The bubble collision model parameters, m, should include both
those that describe the collision, {z0, zcrit, ⇥crit, ⇥0,⇧0}, as well as the cosmological parameters which determine the
CMB power spectrum. However any plausible bubble collision would be su⇥ciently localized that the cosmological
parameters are essentially uncorrelated with them; moreover they are su⇥ciently tightly constrained from CMB
measurements that their uncertainties are minimal in the context of a template-matching problem like this. Hence
we fix the cosmological parameters to their best-fit WMAP values [55] and only the bubble collision parameters are
varied. Hence m = {z0, zcrit, ⇥crit, ⇥0,⇧0} for the bubble collision model, and there are no free parameters in the null
model. Indeed, the no-collision model can be treated as a special case of the collision model in which the collision has
zero amplitude.

As both the CMB signal and the WMAP noise are Gaussian, the likelihood has the form

Pr(db|m, 1) ⌅ exp

�
�1

2
⌃2

⇥
= exp

⇤
�1

2
[db � t(m)]TC�1

b [db � t(m)]

⌅
, (31)

where t(m) is the temperature modulation caused by the collision and Cb is the pixel-pixel covariance matrix. The
temperature modulation of the pth pixel is given from Eq. 3 as tp = 1+f(n̂p), where n̂ is the position on the sky. The
covariance matrix includes CMB cosmic variance, Gaussian smoothing approximating the WMAP W-band beam, and
the pixel-dependent WMAP noise. The covariance between two pixels p and q with angular positions n̂p and n̂q is
hence given by

Cp,q = Np,q +
⇧

⇥

2�+ 1

4⇤
C̄⇥P⇥(n̂p · n̂q), (32)

where C̄⇥ is the best-fit WMAP CMB power spectrum convolved with a Gaussian beam of FWHM 0.22⇥, P⇥(x) is the
Legendre polynomial of degree �, and Np,q is the noise covariance between pixels. This is taken to be

Np,q = �p,q
⌅2
W

Nobs,p
, (33)

where �p,q is the Kronecker delta function, ⌅W = 6.549mK is the RMS noise of the W-band detectors, and Nobs,p is
the number of times WMAP has observed the pth pixel. To preserve any edges, we must invert Cb at full resolution.
Given available computational resources, the maximum area of the sky we can study at any one time is limited to
patches of radius ⇤ 11⇥ surrounding the center of each detected blob.

The evaluation of the evidence integral Eq. A12 and the full characterization of the posterior distribution of the
parameters are both computationally challenging – even when restricted to small patches – as they require a large
number of likelihood evaluations. In all but the simplest of cases it is fatally ine⇥cient to evaluate the likelihood
over a multi-dimensional grid and so a variety of sampling algorithms have been developed in which the likelihood is
only evaluated in the high posterior regions that are of most interest. For both parameter estimation and evidence
calculations we use the nested sampling algorithm [63] as implemented in the publicly available MultiNest package

Searching for collisions
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Nb = 0, 2, 4 (solid, dashed, and dot-dashed curves) blobs containing bubble collisions assuming fsky = 0.7. The presence of a
sky cut skews the distribution towards N̄s > Nb. Note that even when features are conclusively detected, there is an intrinsic
uncertainty in N̄s; this is a form of cosmic variance.

2. Analysis of candidate bubble collision patches

At the heart of the above formalism for assessing the full posterior for N̄s is the evaluation of the patch likelihood
for a single collision, Pr(db|m, 1). Here the data, db, are the measured temperature values of the pixels in the vicinity
of the detected blob that are not in the sky cut. The bubble collision model parameters, m, should include both
those that describe the collision, {z0, zcrit, ⇥crit, ⇥0,⇧0}, as well as the cosmological parameters which determine the
CMB power spectrum. However any plausible bubble collision would be su⇥ciently localized that the cosmological
parameters are essentially uncorrelated with them; moreover they are su⇥ciently tightly constrained from CMB
measurements that their uncertainties are minimal in the context of a template-matching problem like this. Hence
we fix the cosmological parameters to their best-fit WMAP values [55] and only the bubble collision parameters are
varied. Hence m = {z0, zcrit, ⇥crit, ⇥0,⇧0} for the bubble collision model, and there are no free parameters in the null
model. Indeed, the no-collision model can be treated as a special case of the collision model in which the collision has
zero amplitude.

As both the CMB signal and the WMAP noise are Gaussian, the likelihood has the form

Pr(db|m, 1) ⌅ exp

�
�1

2
⌃2

⇥
= exp

⇤
�1

2
[db � t(m)]TC�1

b [db � t(m)]

⌅
, (31)

where t(m) is the temperature modulation caused by the collision and Cb is the pixel-pixel covariance matrix. The
temperature modulation of the pth pixel is given from Eq. 3 as tp = 1+f(n̂p), where n̂ is the position on the sky. The
covariance matrix includes CMB cosmic variance, Gaussian smoothing approximating the WMAP W-band beam, and
the pixel-dependent WMAP noise. The covariance between two pixels p and q with angular positions n̂p and n̂q is
hence given by

Cp,q = Np,q +
⇧

⇥

2�+ 1

4⇤
C̄⇥P⇥(n̂p · n̂q), (32)

where C̄⇥ is the best-fit WMAP CMB power spectrum convolved with a Gaussian beam of FWHM 0.22⇥, P⇥(x) is the
Legendre polynomial of degree �, and Np,q is the noise covariance between pixels. This is taken to be

Np,q = �p,q
⌅2
W

Nobs,p
, (33)

where �p,q is the Kronecker delta function, ⌅W = 6.549mK is the RMS noise of the W-band detectors, and Nobs,p is
the number of times WMAP has observed the pth pixel. To preserve any edges, we must invert Cb at full resolution.
Given available computational resources, the maximum area of the sky we can study at any one time is limited to
patches of radius ⇤ 11⇥ surrounding the center of each detected blob.

The evaluation of the evidence integral Eq. A12 and the full characterization of the posterior distribution of the
parameters are both computationally challenging – even when restricted to small patches – as they require a large
number of likelihood evaluations. In all but the simplest of cases it is fatally ine⇥cient to evaluate the likelihood
over a multi-dimensional grid and so a variety of sampling algorithms have been developed in which the likelihood is
only evaluated in the high posterior regions that are of most interest. For both parameter estimation and evidence
calculations we use the nested sampling algorithm [63] as implemented in the publicly available MultiNest package

no detection
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FIG. 19. The full posterior Pr(N̄s|Nb, fsky) (Eq. A16) that would be obtained from a conclusive detection (i.e., �bs � 1) of
Nb = 0, 2, 4 (solid, dashed, and dot-dashed curves) blobs containing bubble collisions assuming fsky = 0.7. The presence of a
sky cut skews the distribution towards N̄s > Nb. Note that even when features are conclusively detected, there is an intrinsic
uncertainty in N̄s; this is a form of cosmic variance.

2. Analysis of candidate bubble collision patches

At the heart of the above formalism for assessing the full posterior for N̄s is the evaluation of the patch likelihood
for a single collision, Pr(db|m, 1). Here the data, db, are the measured temperature values of the pixels in the vicinity
of the detected blob that are not in the sky cut. The bubble collision model parameters, m, should include both
those that describe the collision, {z0, zcrit, ⇥crit, ⇥0,⇧0}, as well as the cosmological parameters which determine the
CMB power spectrum. However any plausible bubble collision would be su⇥ciently localized that the cosmological
parameters are essentially uncorrelated with them; moreover they are su⇥ciently tightly constrained from CMB
measurements that their uncertainties are minimal in the context of a template-matching problem like this. Hence
we fix the cosmological parameters to their best-fit WMAP values [55] and only the bubble collision parameters are
varied. Hence m = {z0, zcrit, ⇥crit, ⇥0,⇧0} for the bubble collision model, and there are no free parameters in the null
model. Indeed, the no-collision model can be treated as a special case of the collision model in which the collision has
zero amplitude.

As both the CMB signal and the WMAP noise are Gaussian, the likelihood has the form

Pr(db|m, 1) ⌅ exp
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2
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⇥
= exp

⇤
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2
[db � t(m)]TC�1
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⌅
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where t(m) is the temperature modulation caused by the collision and Cb is the pixel-pixel covariance matrix. The
temperature modulation of the pth pixel is given from Eq. 3 as tp = 1+f(n̂p), where n̂ is the position on the sky. The
covariance matrix includes CMB cosmic variance, Gaussian smoothing approximating the WMAP W-band beam, and
the pixel-dependent WMAP noise. The covariance between two pixels p and q with angular positions n̂p and n̂q is
hence given by

Cp,q = Np,q +
⇧

⇥

2�+ 1

4⇤
C̄⇥P⇥(n̂p · n̂q), (32)

where C̄⇥ is the best-fit WMAP CMB power spectrum convolved with a Gaussian beam of FWHM 0.22⇥, P⇥(x) is the
Legendre polynomial of degree �, and Np,q is the noise covariance between pixels. This is taken to be

Np,q = �p,q
⌅2
W

Nobs,p
, (33)

where �p,q is the Kronecker delta function, ⌅W = 6.549mK is the RMS noise of the W-band detectors, and Nobs,p is
the number of times WMAP has observed the pth pixel. To preserve any edges, we must invert Cb at full resolution.
Given available computational resources, the maximum area of the sky we can study at any one time is limited to
patches of radius ⇤ 11⇥ surrounding the center of each detected blob.

The evaluation of the evidence integral Eq. A12 and the full characterization of the posterior distribution of the
parameters are both computationally challenging – even when restricted to small patches – as they require a large
number of likelihood evaluations. In all but the simplest of cases it is fatally ine⇥cient to evaluate the likelihood
over a multi-dimensional grid and so a variety of sampling algorithms have been developed in which the likelihood is
only evaluated in the high posterior regions that are of most interest. For both parameter estimation and evidence
calculations we use the nested sampling algorithm [63] as implemented in the publicly available MultiNest package
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2. Analysis of candidate bubble collision patches

At the heart of the above formalism for assessing the full posterior for N̄s is the evaluation of the patch likelihood
for a single collision, Pr(db|m, 1). Here the data, db, are the measured temperature values of the pixels in the vicinity
of the detected blob that are not in the sky cut. The bubble collision model parameters, m, should include both
those that describe the collision, {z0, zcrit, ⇥crit, ⇥0,⇧0}, as well as the cosmological parameters which determine the
CMB power spectrum. However any plausible bubble collision would be su⇥ciently localized that the cosmological
parameters are essentially uncorrelated with them; moreover they are su⇥ciently tightly constrained from CMB
measurements that their uncertainties are minimal in the context of a template-matching problem like this. Hence
we fix the cosmological parameters to their best-fit WMAP values [55] and only the bubble collision parameters are
varied. Hence m = {z0, zcrit, ⇥crit, ⇥0,⇧0} for the bubble collision model, and there are no free parameters in the null
model. Indeed, the no-collision model can be treated as a special case of the collision model in which the collision has
zero amplitude.

As both the CMB signal and the WMAP noise are Gaussian, the likelihood has the form

Pr(db|m, 1) ⌅ exp

�
�1

2
⌃2

⇥
= exp

⇤
�1

2
[db � t(m)]TC�1

b [db � t(m)]

⌅
, (31)

where t(m) is the temperature modulation caused by the collision and Cb is the pixel-pixel covariance matrix. The
temperature modulation of the pth pixel is given from Eq. 3 as tp = 1+f(n̂p), where n̂ is the position on the sky. The
covariance matrix includes CMB cosmic variance, Gaussian smoothing approximating the WMAP W-band beam, and
the pixel-dependent WMAP noise. The covariance between two pixels p and q with angular positions n̂p and n̂q is
hence given by

Cp,q = Np,q +
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where C̄⇥ is the best-fit WMAP CMB power spectrum convolved with a Gaussian beam of FWHM 0.22⇥, P⇥(x) is the
Legendre polynomial of degree �, and Np,q is the noise covariance between pixels. This is taken to be

Np,q = �p,q
⌅2
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Nobs,p
, (33)

where �p,q is the Kronecker delta function, ⌅W = 6.549mK is the RMS noise of the W-band detectors, and Nobs,p is
the number of times WMAP has observed the pth pixel. To preserve any edges, we must invert Cb at full resolution.
Given available computational resources, the maximum area of the sky we can study at any one time is limited to
patches of radius ⇤ 11⇥ surrounding the center of each detected blob.

The evaluation of the evidence integral Eq. A12 and the full characterization of the posterior distribution of the
parameters are both computationally challenging – even when restricted to small patches – as they require a large
number of likelihood evaluations. In all but the simplest of cases it is fatally ine⇥cient to evaluate the likelihood
over a multi-dimensional grid and so a variety of sampling algorithms have been developed in which the likelihood is
only evaluated in the high posterior regions that are of most interest. For both parameter estimation and evidence
calculations we use the nested sampling algorithm [63] as implemented in the publicly available MultiNest package
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uncertainty in N̄s; this is a form of cosmic variance.

2. Analysis of candidate bubble collision patches

At the heart of the above formalism for assessing the full posterior for N̄s is the evaluation of the patch likelihood
for a single collision, Pr(db|m, 1). Here the data, db, are the measured temperature values of the pixels in the vicinity
of the detected blob that are not in the sky cut. The bubble collision model parameters, m, should include both
those that describe the collision, {z0, zcrit, ⇥crit, ⇥0,⇧0}, as well as the cosmological parameters which determine the
CMB power spectrum. However any plausible bubble collision would be su⇥ciently localized that the cosmological
parameters are essentially uncorrelated with them; moreover they are su⇥ciently tightly constrained from CMB
measurements that their uncertainties are minimal in the context of a template-matching problem like this. Hence
we fix the cosmological parameters to their best-fit WMAP values [55] and only the bubble collision parameters are
varied. Hence m = {z0, zcrit, ⇥crit, ⇥0,⇧0} for the bubble collision model, and there are no free parameters in the null
model. Indeed, the no-collision model can be treated as a special case of the collision model in which the collision has
zero amplitude.

As both the CMB signal and the WMAP noise are Gaussian, the likelihood has the form
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where t(m) is the temperature modulation caused by the collision and Cb is the pixel-pixel covariance matrix. The
temperature modulation of the pth pixel is given from Eq. 3 as tp = 1+f(n̂p), where n̂ is the position on the sky. The
covariance matrix includes CMB cosmic variance, Gaussian smoothing approximating the WMAP W-band beam, and
the pixel-dependent WMAP noise. The covariance between two pixels p and q with angular positions n̂p and n̂q is
hence given by
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where C̄⇥ is the best-fit WMAP CMB power spectrum convolved with a Gaussian beam of FWHM 0.22⇥, P⇥(x) is the
Legendre polynomial of degree �, and Np,q is the noise covariance between pixels. This is taken to be

Np,q = �p,q
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, (33)

where �p,q is the Kronecker delta function, ⌅W = 6.549mK is the RMS noise of the W-band detectors, and Nobs,p is
the number of times WMAP has observed the pth pixel. To preserve any edges, we must invert Cb at full resolution.
Given available computational resources, the maximum area of the sky we can study at any one time is limited to
patches of radius ⇤ 11⇥ surrounding the center of each detected blob.

The evaluation of the evidence integral Eq. A12 and the full characterization of the posterior distribution of the
parameters are both computationally challenging – even when restricted to small patches – as they require a large
number of likelihood evaluations. In all but the simplest of cases it is fatally ine⇥cient to evaluate the likelihood
over a multi-dimensional grid and so a variety of sampling algorithms have been developed in which the likelihood is
only evaluated in the high posterior regions that are of most interest. For both parameter estimation and evidence
calculations we use the nested sampling algorithm [63] as implemented in the publicly available MultiNest package
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• Solution:

•  Find an approximation to the probability by integrating only over the 
regions of parameter space where the contribution is large.

contribution 
largecontribution 

~ zero

Searching for collisions

•  Locate candidate features with a blind analysis.
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•Blind search for candidates:

•  Filter the CMB
•  Judge significance of features against expectations from LCDM.
•  Calibrate with simulations that don’t contain collisions.

(wavelet decomposition, optimal filtering)

Searching for collisions Feeney, MCJ, Mortlock, Peiris
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•Blind search for candidates:

Searching for collisions
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FIG. 5. Sensitivity of the optimal-filter-based candidate detection algorithm, with completeness curves plotted for one, two and
three standard deviations from the 50% completeness curve. The completeness curves are computed in the following manner.
For each scale ✓

crit

we compute the source amplitude (z
0

for bubbles; ✏ for textures) that would be required to ensure that
the SNR reaches the threshold specified in Table I. This level defines the 50% completeness curve, since we expect half of the
sources with this amplitude to fall below the curve and half to fall above. Similarly, we compute approximate completeness
curves for one-, two- and three-standard-deviation di↵erences from the 50% completeness curve. The probabilities quoted on
each completeness curve are computed assuming a Gaussian distribution of the filtered field at the source position.

We conclude this section by assessing the level to which the optimal-filter-based candidate detection algorithm is
sensitive for each source type. In previous studies simulations were performed for this purpose [9, 10, 12]. Here we
instead take a probabilistic approach based on the analytic SNRs of the filters computed previously (see Fig. 4).
This allows us to probe the source size-amplitude parameter space at higher resolution and accuracy than would
be achievable with modest simulations (to reach an equivalent resolution and accuracy through simulations would
be extremely computationally demanding). In Fig. 5 we plot the sensitivity of the matched filters constructed for
bubble collisions and cosmic textures. These plots are produced as follows. For each scale ✓

crit

we compute the source
amplitude (z

0

for bubbles; ✏ for textures) that would be required to ensure that the SNR reaches the threshold specified
in Table I. This level defines the 50% completeness curves shown in Fig. 5 since, in the presence of noise, we expect
half of the sources with this amplitude to be detected and half to be missed. Similarly, we compute approximate
completeness curves for one-, two- and three-standard-deviation di↵erences from the 50% completeness curve (note
that the probabilities quoted on each curve are computed assuming a Gaussian distribution of the filtered field at the
source position). For the 50% completeness curve, the bubble collision matched filters are sensitive to z

0

⇠ 10�4.4,
while the cosmic texture matched filters are sensitive to ✏ ⇠ 10�4.2. Note that the sensitivities computed in this
manner are similar to those computed previously through simulations [9, 10, 12], both in terms of the sensitivity
levels obtained and the shape of the sensitivity regions. Further, we see that optimal matched filters are ⇠ 1.7 times
more sensitive than needlets for detecting bubble collision signatures, as found previously [9, 10, 12].

V. ADAPTIVE-RESOLUTION EVIDENCE CALCULATION

Modern CMB experiments map the sky with extremely high resolution: the beam of the Planck experiment in
the main CMB bands is expected to be ⇠ 50 [15], resulting in maps pixelated on the arcminute scale. While this
is necessary for pinning down the secondary CMB anisotropies at small scales, it means that calculating pixel-space
covariance matrices becomes extremely memory-intensive. We illustrate this point in Fig. 6, which shows the memory
needed to calculate covariance matrices from 1� to 180� in radius at HEALPix resolutions ranging from N

side

= 8
to N

side

= 2048 (i.e., Planck resolution).4 It is clear that the memory costs, which to a good approximation rise as
angular radius to the fourth power, make processing even relatively small patches prohibitive at full Planck resolution.

In previous work [9, 10], we chose to truncate both our patches and the integration limits of ✓
crit

to the maximum
radius invertible with our memory constraints. While this allowed us to at least partially process almost all features at

4 The quantity plotted corresponds to a total number of matrix elements equal to ⇠ 1.5 ⇥ N2

pix

. Our algorithm calculates the full N2

pix

covariance matrix in order to make use of the LAPACK inversion routines [45], then compresses the inverted matrix to a 1-D array
containing its upper triangle to reduce memory costs while sampling.
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FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (� = 0).

crit!�

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the
collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming
in on the region we have causal access to (inset), the universe is very close to flat, and the region a�ected by the collision has
approximate planar symmetry. The region a�ected by the collision appears as a disc of angular radius �crit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the e⇤ects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as

⇥coll = ⇥(a)
�
c̄0 + c̄1(x� xcrit) +O((x� xcrit)

2)
⇥
�(x� xcrit), (6)

•Keep candidates that lie above threshold:
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•  For one candidate:
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FIG. 2:

proper time, and H0 is the current Hubble constant with H0tnow ⇥ 1. The only free parameters are v1 and ⇥c, which
could ultimately be related to the properties and kinematics of a particular collision.

We have neglected a number of potentially important contributions to the temperature profile, including but not
limited to: the redshift of photons crossing into the future light cone of the collision, the finite thickness of the surface
of last scattering, and the e⇥ects of the transfer function. However, we expect the features described above to be
fairly generic. The exact form of the temperature profile, the strength of the temperature discontinuity at the causal
boundary, and the importance of e⇥ects we have neglected will be somewhat model dependent. We will therefore
consider a set of benchmark models that will include examples of the model Eq. 6, as well as generalizations of the
form Eq. 4.

Following CKL, we will assume that the background gaussian fluctuations produced during slow-roll simply “paint”
the perturbed surface of last scattering. The e⇥ect of the bubble collision template is therefore multiplicative, and
the temperature fluctuations including the collision are given by [16]

�T (n̂)
T0

=
T �

0(1 + f(n̂))(1 + �(n̂))� T0

T0
, (7)

where T0 is the temperature averaged over the sky, T �
0 is a constant setting the overall temperature, and �(n̂) are

the Gaussian temperature anisotropies set up by inflation. For low-redshift-excess collisions (i.e. collisions small in
magnitude or extent), we expect little e⇥ect on the average CMB temperature, and so can set T0 ⇤ T �

0, simplifying
the model further to

�T (n̂)
T0

= (1 + f(n̂))(1 + �(n̂))� 1 (8)

In Fig. ?? we show both the bare template and a simulated map containing an exaggerated bubble collision.
Plots of some representative models.

A. Constraints on the theory

What could we tell about the underlying theory of eternal inflation and bubble collisions in the absence of a signal?
There are many factors, and so it would be di⇧cult to constrain the value of any one parameter, but here are some
speculations about what this could tell us.

By making a few reasonable assumptions, we can derive some constraints on the parameters specifying the hypothe-
sized model of eternal inflation. If the potential induced by the collision is composed mostly of a single long-wavelength
mode at last scattering of wavenumber k, as hypothesized above, then the amplitude of the temperature modulation
is

�T

T0
⌅ 2

3
k

H0
�coll (1� cos ⇥c) (9)

Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the
curvature perturbation due to the collision at the beginning of inflation was very large, and therefore �coll ⇥ 1.
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There are many factors, and so it would be di⇧cult to constrain the value of any one parameter, but here are some
speculations about what this could tell us.
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Since the collision potentially involves the release of large amounts of energy, it is reasonable to assume that the
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•Flat prior on amplitude and shape, prior on size and position from theory.
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•The general expression for       candidates:Nb
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FIG. 18. The normalized posterior Pr(N̄s|Nb, fsky) (see Eq. A16) assuming fsky = .7. In the left panel, we show the posterior
obtained for one blob Nb = 1 for a local evidence ratio �b = 4. Comparing with the posterior at N̄s = 0 (dashed line), we see
that any theory predicting N̄s � 4 will be preferred over the theory without bubble collisions. In the right panel, we show the
posterior obtained for four blobs with identical local evidence ratios �b = 1/2. Again, comparing with the posterior at N̄s = 0,
any theory with N̄s � 7 will be preferred over the theory without bubble collisions. When there are multiple blobs, the bubble
collision hypothesis can be supported even when the evidence ratio for each blob is less than one.

Nb detected blobs, we show in Appendix A that the unnormalized posterior can be approximated as

Pr(N̄s|d, fsky) ⇥ Pr(N̄s) e
�fskyN̄s

Nb⇧

Ns=0

(fskyN̄s)Ns

Ns!

Nb⇧

b1,b2,...,bNs=1

�

⇤
Ns⌃

s=1

⇥bs

Ns⌃

i,j=1

(1� �si,sj )

⇥

⌅ ; (28)

where the pre-factors reflect the fact that the number of collisions present on the observable sky, Ns, is the realization
of a Poisson-like process (of mean fskyN̄s), and ⇥b is the evidence ratio evaluated within a candidate collision region
(with data sub-set db) using a single bubble collision template

⇥b =
Pr(db|1)
Pr(db|0)

. (29)

The posterior can therefore be built from local measures of how well the data are described by the standard model
with and without a collision template. Once Eq. 28 is obtained in a particular case, it can be normalized, although
this is not strictly necessary to perform the parameter estimation and model selection analyses.

[HVP: please make sure to put zeros before decimal points!] To illustrate some possibilities, in Fig. 18 we plot
the normalized posterior assuming fsky = 0.7 (from the KQ75 mask) and a uniform prior over N̄s, for the case where
there is a single detected blob (left panel), and four detected blobs (right panel). A theory predicting a particular
value of N̄s will be preferred to a theory without bubble collisions as long as Eq. 27 is larger than one. This amounts
to comparing the posterior at some value of N̄s to the posterior at N̄s = 0 (dashed line). To prefer any theory with
bubble collisions, in the one-blob case it is necessary for the blob to yield a local evidence ratio larger than one (here,
we plot the posterior assuming ⇥b = 4). This is not true when there are multiple blobs, as can be seen in the right
panel of Fig. 18, where we plot the posterior assuming each blob has a local evidence ratio ⇥b = 0.5. The bubble
collision hypothesis (for some values of N̄s) is preferred even when the local evidence ratios are less than one: a
number of marginal detections can yield a significant detection when considered together. We can also obtain any
desired confidence intervals on N̄s by examining the shape of the posterior.

When the local evidence ratios are large, the posterior can be approximated by Eq. A16, appropriately normalized.
In Fig. 19, we plot the posterior (again assuming fsky = 0.7) for no blobs, two blobs, and four blobs. Even in the
presence of large local evidence ratios, it can be seen that the posterior has a significant spread due to cosmic variance:
we only have access to one realization of bubble collisions on the CMB sky. Note that this is true even when there
are no detected blobs. Nevertheless, when there are multiple blobs, the posterior correctly assigns zero probability to
N̄s = 0.

Our analysis also provides constraints on the parameter values of each candidate collision. The constraints on the
n template parameters m are encoded in their joint posterior distribution

Pr(m|db, 1) =
Pr(m) Pr(db|m, 1)

Pr(db, 1)
. (30)

The marginal distribution of any subset of the parameters is given by integrating Pr(m|db, 1) over the remaining
parameters which are not of interest. For the bubble collision model the parameters should include both those
describing the collision and the global cosmological parameters; marginalizing over the latter would give constraints
on the properties of a (putative) detected collision. We now discuss the analysis of the likelihood and evidence ratios
for a patch in greater detail.

Expected 
number of 
features

Poisson 
process

Theory
 prior

Cosmic
 variance
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WMAP7 W-Band (94 GHz) : Candidates

27

ID ✓
crit

range (�) ✓
0

(�) �
0

(�) log ⇢

1 2-6 169.0 187.5 �8.82± 0.3

2 3-5 167.2 268.7 �7.79± 0.3

3 4-14 147.4 207.1 �5.80± 0.3

4 4-8 123.2 321.3 �7.17± 0.3

5 6-8 62.7 220.4 �9.33± 0.3

6 14-22 136.6 176.5 �5.96± 0.3

7 12-20 118.0 212.0 �7.39± 0.3

8 20-24 75.8 168.8 �9.46± 0.3

9 28-35 85.8 166.3 �7.04± 0.3

10 22-40 126.8 220.1 �5.67± 0.3

11 80-90 69.6 61.9 �6.66± 0.3

ID ✓
crit

range (�) ✓
0

(�) �
0

(�) log ⇢

1 1-3 114.6 22.1 �6.08± 0.3

2 1.5-5 168.7 184.4 �3.12± 0.3

3 1.5-4 166.8 268.8 �4.58± 0.3

4 1.5-3 72.4 150.1 �5.57± 0.3

5 2-15 123.5 321.0 �3.31± 0.3

6 2-7 123.2 79.5 �4.73± 0.3

7 2-4 128.3 93.5 �5.56± 0.3

8 2-15 147.4 210.2 �2.06± 0.3

9 5-10 69.3 202.1 �8.04± 0.3

10 8-15 119.3 155.7 �7.71± 0.3

11 4-15 135.4 172.1 �5.48± 0.3

12 7-50 120.7 220.4 �5.84± 0.3

TABLE VIII. The size ranges and locations of the final 11 candidate bubble collisions (left) and 12 candidate textures (right),
along with their patch evidence ratios. The size ranges tabulated are those derived from the optimal filter analysis; where they
extend beyond the relevant priors they are truncated before the evidence calculation. The angular positions are related to
Galactic longitude, l, and latitude, b, by the transformations l = � and b = 90�� ✓. Note that, although bubble collision candi-
dates 8 and 9 overlap considerably, their positions and size ranges are su�ciently discrepant to justify processing individually.

FIG. 15. Top: the bubble collision (left) and texture (right) candidates located in the WMAP 7-year data by the optimal
filters. Bottom: the data associated with each of these candidates. The bubble collision plot shows all of the data involved in
the evidence calculation for each candidate; for clarity, the texture plot only shows the core region of each patch.

the relevant priors on ✓

crit

are likewise cut. Any candidates which are obviously coincident are merged at this point.
The remaining candidates are then required to also be significant in an optimal filter analysis of the WMAP 7-year
V-band foreground-reduced temperature map. This simple check requires that each feature is interesting across a
range of frequencies, indicating that it is not due to foregrounds. This final cut leaves a set of 11 and 12 bubble
collision and texture candidates respectively. The most probable sizes and locations of these candidates are tabulated
in Table VIII and plotted in Fig. 15.
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WMAP7 W-Band (94 GHz) : Posterior

N̄s = 0• The posterior is peaked around

The data does not support the bubble collision hypothesis.

28

FIG. 16. The posterior probabilities of the global parameters of the bubble collision (left) and texture (right) models, given
the WMAP 7-year data. The posterior is plotted as a function of one parameter, N̄

s

, for bubble collisions, and two parameters,
N̄

s

and ✏, for textures. The most probable regions containing 68% and 95% of the posterior probability are indicated by the
dotted and dashed lines in the bubble collision plot, and as dark and light regions in the texture plot. Both posteriors are
strongly peaked at N̄

s

= 0.

Applying the adaptive-resolution evidence calculation to the candidates produces the patch evidence ratios also
reported in Table VIII. No single candidate is strong enough to claim a detection on its own. However, as demonstrated
in Refs. [9, 11], it is possible for a number of weak candidates to favor the addition of relics to ⇤CDM even if their
individual evidence ratios are less than one: only by combining the results obtained for all candidates can the overall
predictive power of the underlying model be revealed. The posteriors on the global parameters of the bubble collision
and texture models, derived by combining the results from the candidates, are plotted in Fig. 16: both posteriors
are peaked at zero sources. The texture model’s dimensionless scale of symmetry breaking is constrained to be
2.6 ⇥ 10�5  ✏  1.0 ⇥ 10�4 (at 95% confidence), which, as the prior is defined only within the range 2.5 ⇥ 10�5 
✏  1.0⇥ 10�4, indicates that the WMAP data do not provide any interesting constraint on this parameter.

The WMAP 7-year data do not favour the addition of either bubble collisions or textures to ⇤CDM. As none of
the candidates exhibits significant evidence for the addition of sources to ⇤CDM, we do not check the candidates for
foreground residuals.

X. DISCUSSION

In Refs [9, 10] and [11], searches for bubble collisions and textures using earlier versions of the Bayesian source
detection pipeline were published. Each previous analysis shares a number of candidate features in common with the
current analysis, allowing consistency checks to be carried out between versions of the pipeline. Comparing results
between versions is non-trivial, and must take into account each change made to the algorithm. In particular:

1. The prior on the bubble collision size has changed from uniform in the range 2-11.25� to being proportional to
sin ✓

crit

in the range 2 � 90�. Ceteris paribus, this will reduce evidence ratios previously reported for bubble
collision candidates, particularly those at small scales.

2. The bubble collision template previously allowed for a discontinuity at the template boundary with amplitude
z

crit

. This parameter is now set to zero due to updated theoretical results [28, 29], and the bubble collision
model considered in this analysis is consequently nested within the model considered previously. The e↵ects
of removing the edge can be determined exactly using the Savage-Dickey Density Ratio [49]: the change in
evidence will be the ratio of the posterior and prior probabilities of the edge amplitude, evaluated at z

crit

= 0
using the results of the previous analysis, i.e.,

� log ⇢ = log
Pr(z

crit

|d, old)
Pr(z

crit

, old)

����
z
crit

=0

.

As there was little evidence to support the edge evidence in the earlier analysis, the ratio of posterior to prior
at z

crit

= 0 is typically ⇠ 10, and the new evidence ratios are boosted accordingly.
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N̄s = 0• The posterior is peaked around

The data does not support the bubble collision hypothesis.

N̄s < 1.6 at 68% CL

• From the shape of the posterior, we can rule out
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What next?

Polarization signal

Czech et. al.
Kleban et. al.

• Check for signals in other datasets.
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What next?

Planck res. with noise

corroborating evidence?

Polarization signal

Czech et. al.
Kleban et. al.

• Check for signals in other datasets.
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N̄s < 1.6 at 68% CL

• What region of theory space have we constrained?

What next?

Novel connection between numerical relativity and 
observational cosmology!
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N̄s < 1.6 at 68% CL

• What region of theory space have we constrained?

What next?

• Numerical simulations are needed to connect the potential 
to the template! 5

f
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zcrit
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�critz

FIG. 1. The radial temperature modulation Eq. 4 induced by a bubble collision centered on the the north pole (� = 0).

crit!�

FIG. 2. A Poincare-disc representation of the surface of last scattering inside our parent bubble. The future light cone of the
collision at this time is denoted by the dark red line, with the shaded region representing the portions of the surface of last
scattering that are to the future of the collision. Our past light cone at last scattering is represented by the dashed circle. From
the present bounds on curvature, the size of our past light cone must be much smaller than one curvature radius. Zooming
in on the region we have causal access to (inset), the universe is very close to flat, and the region a�ected by the collision has
approximate planar symmetry. The region a�ected by the collision appears as a disc of angular radius �crit on the CMB sky.

The collision introduces pre-inflationary inhomogeneities into our bubble. The exact nature of these inhomogeneities
depends on the specific model underlying the formation of our bubble and the subsequent epoch of slow-roll inflation,
as well as the specifics of the collision. In dramatic cases, the collision ends slow-roll inflation everywhere within its
future light cone [18], induces the transition to another vacuum state [23, 39, 40], or produces a post-collision domain
wall that eats into our bubble interior [17, 19]. These scenarios are obviously in conflict with observation, and we do
not consider them further. In mild cases, which will be our focus in the remainder of this paper, collisions satisfy
the “compatibility” criterion defined above: the observable portion of the surface of last scattering is only minimally
disturbed by the collision. Thin-wall analysis [17] and numerical simulations [18, 20] indicate that it is indeed possible
to find situations where the e⇤ects of a collision are compatible with our observed cosmology.

The disturbance caused by a collision is a pre-inflationary relic and thus is stretched by the period of inflation
inside the bubble. From the current bound on curvature [36], we can infer that our past light cone encompasses less
than one horizon volume at the onset of inflation. This implies that the initial disturbances caused by a collision,
which is smeared out on the scale of the inflationary horizon after a few e-folds of inflation, has a wavelength today
that is larger than the current horizon size. Together with the planar symmetry of the collision at last-scattering (by
convention along the y-z plane), this implies that we can Taylor-expand the Newtonian potential (see Ref. [26] for
a translation between the Newtonian potential and the originally postulated temperature modulation presented in
Ref. [20]) about the causal boundary of the collision at x = xcrit as

⇥coll = ⇥(a)
�
c̄0 + c̄1(x� xcrit) +O((x� xcrit)

2)
⇥
�(x� xcrit), (6)

(Like in inflation: general template for fluctuations needs to be connected to the potential)

Novel connection between numerical relativity and 
observational cosmology!
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