Matt Johnson Perimeter Institute/York University

 Most of cosmology is described by General Relativity and Relativistic Hydrodynamics.

- Most of cosmology is described by General Relativity and Relativistic Hydrodynamics.
- The fundamental variables:

 $g_{\mu\nu}(x,t)$ $\rho_i(x,t)$ $u^{\mu}(x,t)$ metric fluid densities fluid velocities

- Most of cosmology is described by General Relativity and Relativistic Hydrodynamics.
- The fundamental variables:

 $g_{\mu\nu}(x,t) \qquad
ho_i(x,t) \qquad u^{\mu}(x,t)$ metric fluid densities fluid velocities

The laws: Einstein and continuity equations

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \qquad \nabla_{\mu} T^{\mu\nu} = 0 \qquad T_{\mu\nu} = \sum_{i} \left(\rho_{i} + p_{i}\right) u_{i\mu} u_{i\nu} + p_{i} g_{\mu\nu}$$

- Most of cosmology is described by General Relativity and Relativistic Hydrodynamics.
- The fundamental variables:

 $g_{\mu\nu}(x,t) \qquad
ho_i(x,t) \qquad u^{\mu}(x,t)$ metric fluid densities fluid velocities

• The laws: Einstein and continuity equations

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \qquad \nabla_{\mu} T^{\mu\nu} = 0 \qquad T_{\mu\nu} = \sum_{i} \left(\rho_{i} + p_{i}\right) u_{i\mu} u_{i\nu} + p_{i} g_{\mu\nu}$$

Set of coupled PDE's -- need initial conditions!

• For much of the history of the Universe:

$$g_{\mu\nu}(x,t) = \bar{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$$

$$\rho_i(x,t) = \bar{\rho}_i(t) + \delta \rho_i(x,t) \qquad \delta = \text{ small}$$

$$u^{\mu}(x,t) = \bar{u}^{\mu} + \delta u^{\mu}(x,t)$$

• For much of the history of the Universe:

$$g_{\mu\nu}(x,t) = \bar{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$$

$$\rho_i(x,t) = \bar{\rho}_i(t) + \delta \rho_i(x,t) \qquad \delta = \text{ small}$$

$$u^{\mu}(x,t) = \bar{u}^{\mu} + \delta u^{\mu}(x,t)$$

• Why was the universe so nearly homogeneous?

• For much of the history of the Universe:

$$g_{\mu\nu}(x,t) = \bar{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$$

$$\rho_i(x,t) = \bar{\rho}_i(t) + \delta \rho_i(x,t) \qquad \delta = \text{ small}$$

$$u^{\mu}(x,t) = \bar{u}^{\mu} + \delta u^{\mu}(x,t)$$

- Why was the universe so nearly homogeneous?
- For today: this is an extraordinary convenience!

• For much of the history of the Universe:

$$g_{\mu\nu}(x,t) = \bar{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$$

$$\rho_i(x,t) = \bar{\rho}_i(t) + \delta \rho_i(x,t) \qquad \delta = \text{ small}$$

$$u^{\mu}(x,t) = \bar{u}^{\mu} + \delta u^{\mu}(x,t)$$

- Why was the universe so nearly homogeneous?
- For today: this is an extraordinary convenience!

Initial Conditions

• The homogeneous Universe:

$$p_i = w_i \rho_i$$
 $ar{
ho}_i(t_0)$
Types of fluids Densities today

Initial Conditions

• The homogeneous Universe:

$$p_i = w_i \rho_i$$

Types of fluids

 $\bar{\rho}_i(t_0)$

Densities today

• The Linear Universe:

Characterize statistics of inhomogeneities!

 $\mathcal{P}\left[g_{\mu\nu}\left(x,t=0\right)\right] \quad \mathcal{P}\left[\rho_{i}\left(x,t=0\right)\right] \quad \mathcal{P}\left[u_{i\mu}\left(x,t=0\right)\right]$

Assume our Universe is typical.

6 Parameter Model of the Universe

Initially small fluctuations collapse to form galaxies, stars, etc.

That's it! The rest is details.

Giving Thanks

- The non-linear Universe
 - GR is highly non-linear inferring the state of the early universe would be like asking for the weather 100 million years ago based on the weather today.
 - No general classification of metrics how to characterize initial conditions?
 - Shock waves, singularities, oh my!

Giving Thanks

- The linear Universe
 - Simple evolution allows initial conditions to be inferred.
 - Background evolution and growth of structure can be analyzed separately.
 - Simple classification of initial conditions and metric degrees of freedom.
 - Physics on different scales evolves independently (Fourier modes independent).

The rest

Now for some details....

13.7 Billion Years: the present.9.1 Billion Years: our sun ignites.

100 million years galaxies and first stars form.

380,000 years: neutral atoms form.

1 second: atomic nuclei form.

 10^{-6} seconds: protons and neutrons form. ?Big Bang?

• The metric in a flat, homogeneous, isotropic universe:

$$ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j}$$

$$\begin{tabular}{l} \label{eq:star} & \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular}$$

• The metric in a flat, homogeneous, isotropic universe:

constant comoving distance = growing physical distance

• Conformal time:

$$\eta = \int \frac{dt}{a(t)} \qquad \qquad ds^2 = a^2(\eta) \left[-d\eta^2 + \delta_{ij} dx^i dx^j \right]$$

Conformal time:

$$\eta = \int \frac{dt}{a(t)} \qquad \qquad ds^2 = a^2(\eta) \left[-d\eta^2 + \delta_{ij} dx^i dx^j \right]$$

Conformal time:

$$\eta = \int \frac{dt}{a(t)} \qquad ds^2 = a^2(\eta) \left[-d\eta^2 + \delta_{ij} dx^i dx^j \right]$$

particle horizon

• Equations of motion in a homogeneous universe:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \square \searrow \quad H^2 \equiv \left(\frac{\dot{a}}{a}\right) = \frac{8\pi G\rho}{3}$$

• Equations of motion in a homogeneous universe:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \qquad \longrightarrow \qquad H^2 \equiv \left(\frac{\dot{a}}{a}\right) = \frac{8\pi G \rho}{3}$$
$$\nabla_{\mu} T^{\mu\nu} = 0 \qquad \implies \qquad \dot{\rho} = -3H\left(\rho + p\right)$$
$$p = w\rho$$

• Equations of motion in a homogeneous universe:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \qquad \longrightarrow \qquad H^2 \equiv \left(\frac{\dot{a}}{a}\right) = \frac{8\pi G \rho}{3}$$

$$\nabla_{\mu} T^{\mu\nu} = 0 \qquad \implies \qquad \dot{\rho} = -3H \left(\rho + p\right)$$

$$p = w\rho$$

• Solutions:

$$\rho = \rho_0 a^{-3(1+w)} \qquad a(t) = a_0 t^{\frac{2}{3(1+w)}}$$

different fluids gravitate differently!

• Evolution of the scale factor:

• Energy budget:

$$\left(\frac{H}{H_0}\right)^2 = \sum_i \Omega_i a^{-3(1+w_i)} \qquad \sum_i \Omega_i = 1$$

• Energy budget:

$$\left(\frac{H}{H_0}\right)^2 = \sum_i \Omega_i a^{-3(1+w_i)} \qquad \sum_i \Omega_i = 1$$

$$\int_i^{\text{Dark Matter}} \frac{26.8\%}{4.9\%} \qquad \left(\Omega_r \sim 10^{-4}\right)^2$$

$$\int_i^{\text{Dark Energy}} \frac{68.3\%}{68.3\%}$$

 $a = \frac{1}{1+z}$ • Redshift: $z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{obs}}$ $a = 1, \quad z = 0$ $z_{\rm eq} = 3400,$ $z_* = 1090,$ $z_{\rm re} \sim 11,$ $z_{\rm gal} \sim 11 - 12,$ $z_{\rm surveys} \lesssim 1$, $z_{\Lambda} = .28,$ $z_{\text{Virgo}} = .003$

• There is structure in the Universe:

• In Fourier space:

$$\rho(x,t) = \frac{1}{V} \sum \rho(k,t) e^{i\vec{k}\cdot\vec{x}}$$

$$\rho(k,t)$$

$$\bar{\rho}(t)$$

$$k$$

• There is structure in the Universe:

• There is structure in the Universe:

• There is structure in the Universe:

• There is structure in the Universe:

Structure:
$$rac{\delta
ho}{ar{
ho}}\gtrsim 1$$

 $\mathcal{O}(10^6)$ galaxies $\mathcal{O}(10^3)$ clusters $\mathcal{O}(1)$ superclusters

• There is structure in the Universe:

$$\begin{array}{lll} \mbox{Structure:} & \frac{\delta\rho}{\bar{\rho}}\gtrsim 1 & \mathcal{O}(10^6) \ \mbox{galaxies} \\ & \mathcal{O}(10^3) \ \ \mbox{clusters} \\ & \mathcal{O}(1) \ \ \ \mbox{superclusters} \end{array}$$

- There is structure on all scales which have had a chance to undergo gravitational collapse.
- The largest structures in the Universe define a scale above which the fluctuations in density are linear:

$$k = .1 - .01 {\rm Mpc}^{-1} \qquad \lambda \sim 1\% ~{\rm of}~{\rm observable}~{\rm Universe}$$
 wave number

• There is structure in the Universe:

Luminous: Baryons Photons Semi-Luminous: Neutrinos

• There is structure in the Universe:

Luminous: Baryons Photons Semi-Luminous: Neutrinos Dark: Dark Matter Dark Energy

• For non-relativistic matter in flat space:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) &= 0 & \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} + \frac{\nabla p}{\rho} + \nabla \phi = 0 \\ \text{continuity} & \text{Euler} \\ \nabla^2 \phi &= 4\pi G\rho \end{aligned}$$

Poisson

• For non-relativistic matter in flat space:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \qquad \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} + \frac{\nabla p}{\rho} + \nabla \phi = 0$$
continuity
Euler
$$\nabla^2 \phi = 4\pi G\rho$$
Poisson
Linearize:

$$\begin{split} \rho &= \bar{\rho} + \delta \rho \qquad \phi = \bar{\phi} + \delta \phi \qquad \vec{v} = \bar{\vec{v}} + \delta \vec{v} \\ p &= \bar{p} + c_s^2 \delta \rho \\ c_s^2 &= \frac{\partial p}{\partial \rho} = w \end{split}$$

• Linearized equation of motion:

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_s^2 \nabla^2 \delta \rho - 4\pi G \bar{\rho} \delta \rho = 0$$

• Linearized equation of motion:

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_s^2 \nabla^2 \delta \rho - 4\pi G \bar{\rho} \delta \rho = 0$$

• Fourier transform:

$$\delta\rho(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \delta\rho(t,k) e^{i\vec{k}\cdot\vec{x}}$$

• Linearized equation of motion:

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_s^2 \nabla^2 \delta \rho - 4\pi G \bar{\rho} \delta \rho = 0$$

• Fourier transform:

$$\delta\rho(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \delta\rho(t,k) e^{i\vec{k}\cdot\vec{x}} \qquad \frac{\partial^2\delta\rho}{\partial t^2} + \left(c_s^2k^2 - 4\pi G\bar{\rho}\right)\delta\rho = 0$$

• Linearized equation of motion:

$$\frac{\partial^2 \delta \rho}{\partial t^2} - c_s^2 \nabla^2 \delta \rho - 4\pi G \bar{\rho} \delta \rho = 0$$

• Fourier transform:

$$\delta\rho(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \delta\rho(t,k) e^{i\vec{k}\cdot\vec{x}} \qquad \frac{\partial^2\delta\rho}{\partial t^2} + \left(c_s^2k^2 - 4\pi G\bar{\rho}\right)\delta\rho = 0$$

$$\delta \rho(t,k) = A \exp(i\omega(k)t) + B \exp(-i\omega(k)t)$$

$$\omega(k) = \sqrt{k^2 c_s^2 - 4\pi G\bar{\rho}}$$

$$\omega(k) = \sqrt{k^2 c_s^2 - 4\pi G\bar{\rho}}$$

$$\omega(k) = \sqrt{k^2 c_s^2 - 4\pi G\bar{\rho}}$$

• Jeans scale: competition between pressure and gravity

$$\lambda_J = \frac{2\pi}{k_J} = c_s \left(\frac{\pi}{G\bar{\rho}}\right)^{1/2}$$

$$\omega(k) = \sqrt{k^2 c_s^2 - 4\pi G\bar{\rho}}$$

Jeans scale: competition between pressure and gravity

• In an expanding universe waves are stretched:

$$\int_{\Delta x} \int_{\Delta x} \int_{\Delta s} \int_{$$

• In an expanding universe waves are stretched:

- Only gravitationally bound (non-linear) structures separate from the Hubble flow.
- Expansion inhibits collapse.

 $t_{\rm coll} \sim (4\pi G \bar{\rho})^{-1/2} \sim H^{-1}$ Expansion will be relevant!

 $t_{\rm coll} \sim (4\pi G \bar{\rho})^{-1/2} \sim H^{-1}$ Expansion will be relevant!

• Including expansion (on small scales):

$$\left[\frac{d^2}{dt^2} + 2H\frac{d}{dt} + \left(c_s^2\frac{k_{\rm com}^2}{a^2} - 4\pi G\bar{\rho}\right)\right]\frac{\delta\rho(t,k_{\rm com})}{\bar{\rho}(t)} = 0$$

 $t_{\rm coll} \sim (4\pi G \bar{\rho})^{-1/2} \sim H^{-1}$ Expansion will be relevant!

Including expansion (on small scales):

$$\left[\frac{d^2}{dt^2} + 2H\frac{d}{dt} + \left(c_s^2\frac{k_{\rm com}^2}{a^2} - 4\pi G\bar{\rho}\right)\right]\frac{\delta\rho(t,k_{\rm com})}{\bar{\rho}(t)} = 0$$

 $t_{\rm coll} \sim (4\pi G \bar{\rho})^{-1/2} \sim H^{-1}$ Expansion will be relevant!

Including expansion (on small scales):

$$\left[\frac{d^2}{dt^2} + 2H\frac{d}{dt} + \left(c_s^2\frac{k_{\rm com}^2}{a^2} - 4\pi G\bar{\rho}\right)\right]\frac{\delta\rho(t,k_{\rm com})}{\bar{\rho}(t)} = 0$$

 $c_s^2 = 0 \quad \begin{array}{c|c} \mbox{radiation} & \mbox{matter} & \mbox{dark energy} \\ \hline \frac{\delta\rho}{\bar{\rho}} \propto \log(a) & \mbox{d}{\bar{\rho}} \propto a & \mbox{d}{\bar{\rho}} \propto \cosh t. \end{array}$

To have structure, need:

$$\frac{\delta\rho}{\bar{\rho}}(t_{\rm eq})\gtrsim 3\times 10^{-4}$$

1

- An important scale: comoving horizon
- Horizon crossing: k = aH

- An important scale: comoving horizon
- Horizon crossing: k = aH

conformal time $\,\eta\,$

1

- An important scale: comoving horizon
- Horizon crossing: k = aH

conformal time $\,\eta\,$

1

1

- An important scale: comoving horizon
- Horizon crossing: k = aH

- An important scale: comoving horizon
- Horizon crossing: k = aH

conformal time $\,\eta\,$

1

- An important scale: comoving horizon
- Horizon crossing: k = aH

conformal time η

1

- An important scale: comoving horizon
- Horizon crossing: k = aH

conformal time $\,\eta\,$

1

- An important scale: comoving horizon
- Horizon crossing: k = aH

conformal time $\,\eta\,$

1

Relativistic Perturbations

• The full model:

$$\delta g_{\mu\nu}(x,t) \quad \delta \rho_i(x,t) \quad \delta u^{\mu}(x,t)$$
$$\nabla_{\mu} \delta T^{\mu\nu} = 0 \qquad \delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu}$$

Relativistic Perturbations

• The full model:

$$\delta g_{\mu\nu}(x,t) \quad \delta \rho_i(x,t) \quad \delta u^{\mu}(x,t)$$

$$\nabla_{\mu} \delta T^{\mu\nu} = 0 \qquad \delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu}$$
• Metric fluctuations

Relativistic Perturbations

• The full model:

$$\delta g_{\mu\nu}(x,t) \quad \delta \rho_i(x,t) \quad \delta u^{\mu}(x,t)$$

$$\nabla_{\mu} \delta T^{\mu\nu} = 0 \qquad \delta G_{\mu\nu} = 8\pi G \delta T_{\mu\nu}$$
fluctuations
$$- 4 \text{ scalar} \longleftrightarrow \delta \rho_i(x,t)$$

• Metric fluctuations

$$\delta g_{\mu\nu}(x,t) \xrightarrow{\qquad 4 \text{ scalar } \leftrightarrow \delta \rho_i(x,t)} 4 \text{ vector } \text{ decay, not major player} 2 \text{ tensor } \text{ gravity waves}$$

• Gauge choice: only 6 DOF.

$$ds^{2} = a(\eta)^{2} \left[-(1+2\Psi) \, d\eta^{2} + (1+2\Phi) \, \delta_{ij} dx^{i} dx^{j} \right]$$

"Conformal Newtonian Gauge"


```
photons tightly
coupled to baryons
imperfect fluid with
   c_s^2 \simeq 1/2
dark matter
perturbations begin
to grow
```

equality

equality recombination				
	photons tightly coupled to baryons imperfect fluid with $c_s^2 \simeq 1/2$	neutral atoms form photons and baryons decouple: CMB is released!		
	dark matter perturbations begin to grow	baryons begin to collapse into dark matter halos		

equality recomb		ination reioni	zation
	photons tightly coupled to baryons imperfect fluid with $c_s^2 \simeq 1/2$	neutral atoms form photons and baryons decouple: CMB is released!	
	dark matter perturbations begin to grow	baryons begin to collapse into dark matter halos	
Important events

equ	ality recomb	ination reioni	zation
	photons tightly coupled to baryons imperfect fluid with $c_s^2\simeq 1/2$	neutral atoms form photons and baryons decouple: CMB is released!	first non-linear structure stars reionize the Universe
	dark matter perturbations begin to grow	baryons begin to collapse into dark matter halos	hierarchical structure formation some CMB photons re- scatter

Baryon Acoustic Oscillations

• Before recombination, photons and baryons are coupled:

$$\left[\frac{d^2}{dt^2} + 2H\frac{d}{dt} + \left(c_s^2\frac{k_{\rm com}^2}{a^2} - 4\pi G\bar{\rho}\right)\right]\frac{\delta\rho(t,k_{\rm com})}{\bar{\rho}(t)} = 0$$

effective pressure from coupling

Baryon Acoustic Oscillations

• Before recombination, photons and baryons are coupled:

$$\left[\frac{d^2}{dt^2} + 2H\frac{d}{dt} + \left(c_s^2\frac{k_{\rm com}^2}{a^2} - 4\pi G\bar{\rho}\right)\right]\frac{\delta\rho(t,k_{\rm com})}{\bar{\rho}(t)} = 0$$

effective pressure from coupling

• Sound horizon:

$$r_s = \int_0^\eta d\eta \ c_s(\eta)$$

$$\frac{\delta\rho}{\bar{\rho}} \propto \cos\left[kr_s(\eta)\right]$$

frequency of oscillation for sound waves

Standard ruler!

Baryon Acoustic Oscillations

• Before recombination, photons and baryons are coupled:

• The Universe is filled with a gas of photons.

$$dN(t, \vec{x}) = f(t, \vec{x}, p) \frac{d^3 x d^3 p}{(2\pi)^3}$$

$$f = \frac{1}{\exp\left[\frac{p}{T(t)}\right] - 1}$$

Bose-Einstein

distribution

• The Universe is filled with a gas of photons.

$$dN(t, \vec{x}) = f(t, \vec{x}, p) \frac{d^3 x d^3 p}{(2\pi)^3}$$

$$f = \frac{1}{\exp\left[\frac{p}{T(t)}\right] - 1}$$

Bose-Einstein
distribution

T(t) -- all photons stretched equally

- The Universe's most perfect blackbody.
- The temperature today is 2.73 K.

• Perturbations are characterized by:

$$f = \frac{1}{\exp\left[\frac{p}{T(t)(1+\Theta(\vec{x},t,\hat{p}))}\right] - 1} \qquad \Theta = \frac{\delta T}{T}$$

• Perturbations are characterized by:

Observers at each position see an

anisotropic distribution of photons

$$f = \frac{1}{\exp\left[\frac{p}{T(t)(1+\Theta(\vec{x},t,\hat{p}))}\right] - 1}$$

 $\Theta = \frac{\delta T}{T}$

$$dN(t_{\rm now}, \vec{x}_{\rm here}) = \int f(t_{\rm now}, \vec{x}, p) \delta(\vec{x}_{\rm here}) \frac{d^3 x d^3 p}{(2\pi)^3}$$

Full set of coupled $\left(\frac{\delta\rho}{-}\right)$, $v_{\rm dm}$, $\left(\frac{\delta\rho}{-}\right)$, $v_{\rm b}$, Θ , Φ , Ψ the tempera anisotrop

ature
$$(\bar{\rho})_{dm}^{ature}, (\bar{\rho})_{b}^{ature}, (\bar{\rho})_{b}^{ature}$$

Full set of coupled variables go into finding $\left(\frac{\delta \rho}{\bar{\rho}} \right)$ the temperature anisotropy

$$\left(\frac{\rho}{\bar{\rho}}\right)_{\rm dm}, v_{\rm dm}, \left(\frac{\delta\rho}{\bar{\rho}}\right)_{\rm b}, v_{\rm b}, \Theta, \Phi, \Psi$$

• Sachs-Wolfe -- valid on largest scales

$$\left(\frac{\Delta T}{T}\right)_{\text{fin}} = \left(\frac{\Delta T}{T}\right)_{\text{init}} - \Phi_{\text{init}} = -\frac{\Phi_{\text{init}}}{3}$$

$$\begin{array}{c} \text{Intrinsic} & \text{gravitational} \\ \text{temperature} & \text{redshift} \\ \text{variations} \end{array}$$

Full set of coupled variables go into finding the temperature anisotropy $\left(\frac{\delta \mu}{\bar{\rho}}\right)$

$$\left(\frac{\overline{\rho}}{\overline{\rho}}\right)_{\mathrm{dm}}, v_{\mathrm{dm}}, \left(\frac{\delta\rho}{\overline{\rho}}\right)_{\mathrm{b}}, v_{\mathrm{b}}, \Theta, \Phi, \Psi$$

• Sachs-Wolfe -- valid on largest scales

$$\begin{pmatrix} \Delta T \\ T \end{pmatrix}_{\text{fin}} = \begin{pmatrix} \Delta T \\ T \end{pmatrix}_{\text{init}} - \Phi_{\text{init}} = -\frac{\Phi_{\text{init}}}{3}$$
Intrinsic gravitational temperature redshift variations

Integrated Sachs-Wolfe -- time dependence of potentials.

• In linear theory, can sum up the contribution from each fourier mode separately:

• In linear theory, can sum up the contribution from each fourier mode separately:

• In linear theory, can sum up the contribution from each fourier mode separately:

• Convenient to perform spherical harmonic transform:

$$\Theta(t, \vec{x}, \hat{p}) = \sum_{\ell} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{p})$$

• Convenient to perform spherical harmonic transform:

$$\Theta(t, \vec{x}, \hat{p}) = \sum_{\ell} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{p})$$

• The transfer function: $\Phi_{\text{init}}(k) \rightarrow a_{\ell m}$

$$a_{\ell m} = \int \frac{d^3 k}{(2\pi)^3} \Delta_{\ell}(k) \Phi_{\text{init}}(k) Y_{\ell m}(\hat{k})$$

projection, evolution, ISW, etc.

• Convenient to perform spherical harmonic transform:

$$\Theta(t, \vec{x}, \hat{p}) = \sum_{\ell} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{p})$$

• The transfer function: $\Phi_{\text{init}}(k) \rightarrow a_{\ell m}$

$$a_{\ell m} = \int \frac{d^3 k}{(2\pi)^3} \Delta_{\ell}(k) \Phi_{\text{init}}(k) Y_{\ell m}(\hat{k})$$

projection, evolution, ISW, etc.

• Computed numerically: CAMB, CMBFast, etc.

The Power Spectrum

• Fluctuations are characterized statistically:

$$\langle \Phi(k)\Phi(k')\rangle = \delta^3(k-k')P(k)$$

$$\langle a_{\ell m} a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

gaussian: $\langle \Phi(k) \Phi(k') \Phi(k'') \rangle = 0$

$$C_{\ell} = \frac{2}{\pi} \int dk \ k^2 \Delta_{\ell}^2(k) P(k)$$

Relates statistics of primordial fluctuations to the statistics of fluctuations in the CMB

The Power Spectrum

$$P(k) = Ak^{n_s - 1} \longrightarrow C_\ell$$

Comments

- In a statistically homogeneous and isotropic universe with gaussian fluctuations, the power spectrum is all the information there is.
- There is power on scales of order the size of the observable universe -- superhorizon fluctuations.
- The structure of the acoustic peaks is determined by the contents of the universe as well as the initial conditions.

Other cool things in CMB

• Lensing of the CMB: information on intervening structure

- Polarization of the CMB: primordial gravitational waves
- Sunyaev-Zeldovich effect: shadows of galaxy clusters in the CMB
- Combined mass and number of neutrinos.

6 Parameter Model of the Universe

ΛCDM

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
$\overline{\Omega_{\mathrm{b}}h^2}$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 ± 0.00028
$\Omega_{\rm c} h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 ± 0.0027
100θ _{MC}	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 ± 0.00063
au	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$
$n_{\rm s}$	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 ± 0.0073
$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	$3.089^{+0.024}_{-0.027}$

6 Parameter Model of the Universe

ΛCDM

	Planck		Planck+lensing		Planck+WP		
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits	
$\Omega_{ m b}h^2$	0.022068	0.02207 ± 0.00033	0.022242	0.02217 ± 0.00033	0.022032	0.02205 = 0.00028	
$\Omega_{\rm c} h^2$	0.12029	0.1196 ± 0.0031	0.11805	0.1186 ± 0.0031	0.12038	0.1199 = 0.0027	
$100\theta_{\rm MC}$	1.04122	1.04132 ± 0.00068	1.04150	1.04141 ± 0.00067	1.04119	1.04131 = 0.00063	
τ	0.0925	0.097 ± 0.038	0.0949	0.089 ± 0.032	0.0925	$0.089^{+0.012}_{-0.014}$	
$n_{\rm s}$	0.9624	0.9616 ± 0.0094	0.9675	0.9635 ± 0.0094	0.9619	0.9603 = 0.0073	
$\ln(10^{10}A_{\rm s})$	3.098	3.103 ± 0.072	3.098	3.085 ± 0.057	3.0980	$3.089^{+0.024}_{-0.027}$	