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I too have many reasons to believe that the

present quantum theory, inspite of its many

successes, is far from the truth. This theory

reminds me a little of the system of delusion

of an exceedingly intelligent paranoiac con-

cocted of incoherent elements of thought.

(Einstein, 1952; letter to Daniel Lipkin)
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... conventional formulations of quantum the-

ory, and of quantum field theory in particu-

lar, are unprofessionally vague and ambigu-

ous. Professional theoretical physicists ought

to be able to do better. Bohm has shown us

a way. (John Stewart Bell)
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The Point of Bohmian Mechanics

1. Quantum Mechanics

2. Quantum Properties

3. QTWO

4. The Measurement Problem
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5. Ontology

6. Bohmian Mechanics

7. BM and the Problems with QM



Quantum Mechanics (Part 1)

• N-particle system ↔ Hilbert spaceH [ = L2(R3N) ]

• state ↔ ψ ∈ H [ ψ = ψ(q) = ψ(q1, . . . , qN) ]

• evolution ↔ Schrödinger’s equation

i~
∂ψ

∂t
= Hψ ,

[ H = −
N∑
k=1

~2

2mk
∆k + V, ∆k = ∇2

k ]
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Quantum Mechanics (Part 2)
“Measurement” Postulates

• Observables ↔ self-adjoint operators A on H

• measurement of A ↔ spectral measures ProbψA(da)

Eψ(A) = 〈ψ,Aψ〉

• measurement of A ↔ spectral measures ProbψA(da)

A = (A1, . . . , Am), [Ai, Aj] = 0

Probψq (dq) = |ψ(q)|2
7



• Collapse of the wave function:

A|α〉 = α|α〉,

ψ =
∑
α
cα|α〉

“Measure” A and find a (with probability |ca|2)

⇒

ψ → |a〉



What’s with the quotes?

“Measurement”, “Measure”
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Quantum Properties

NRAO: Naive Realism About Operators
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A final moral concerns terminology. Why did such serious peo-

ple take so seriously axioms which now seem so arbitrary? I

suspect that they were misled by the pernicious misuse of the

word ‘measurement’ in contemporary theory. This word very

strongly suggests the ascertaining of some preexisting property

of some thing, any instrument involved playing a purely pas-

sive role. Quantum experiments are just not like that, as we

learned especially from Bohr. The results have to be regarded

as the joint product of ‘system’ and ‘apparatus,’ the complete

experimental set-up. But the misuse of the word ‘measurement’

makes it easy to forget this and then to expect that the ‘results

of measurements’ should obey some simple logic in which the

apparatus is not mentioned. The resulting difficulties soon show

that any such logic is not ordinary logic. It is my impression that

the whole vast subject of ‘Quantum Logic’ has arisen in this
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way from the misuse of a word. I am convinced that the word

‘measurement’ has now been so abused that the field would be

significantly advanced by banning its use altogether, in favour

for example of the word ‘experiment.’ (page 166)



QTWO

Quantum Theory Without Observers
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The concept of ‘measurement’ becomes so fuzzy on

reflection that it is quite surprising to have it appear-

ing in physical theory at the most fundamental level.

... [D]oes not any analysis of measurement require

concepts more fundamental than measurement? And

should not the fundamental theory be about these

more fundamental concepts? (John Stewart Bell, 1981)
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It would seem that the theory is exclusively concerned about

“results of measurement”, and has nothing to say about anything

else. What exactly qualifies some physical systems to play the

role of “measurer”? Was the wavefunction of the world waiting

to jump for thousands of millions of years until a single-celled

living creature appeared? Or did it have to wait a little longer,

for some better qualified system... with a Ph.D.? If the theory is

to apply to anything but highly idealized laboratory operations,

are we not obliged to admit that more or less “measurement-

like” processes are going on more or less all the time, more or

less everywhere. Do we not have jumping then all the time?

(John Stewart Bell, 1990)
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The Measurement Problem

Does the wave function of a system provide a com-

plete description of that system?

Ψalive + Ψdead

Ψleft + Ψright
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Ontology
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What is missing?

• a clear ontology

• an adequate ontology

• that does the job (correct predictions, ex-

plaining observed facts)
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Bohmian Mechanics
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Bohmian Mechanics

ψ = ψ(q1, . . . , qN)

Q: Q1, . . . , QN
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i~
∂ψ

∂t
= Hψ ,

H = −
N∑
k=1

~2

2mk
∇2
k + V,

dQk
dt

=
~
mk

Im
ψ∗∇kψ
ψ∗ψ

(Q1 . . . ,QN)
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time evolution for ψ

↗
p = ~k

↘
time evolution for Q

dQ/dt = ∇S/m
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Is it not clear from the smallness of the scintillation on the screen

that we have to do with a particle? And is it not clear, from

the diffraction and interference patterns, that the motion of the

particle is directed by a wave? De Broglie showed in detail how

the motion of a particle, passing through just one of two holes in

screen, could be influenced by waves propagating through both

holes. And so influenced that the particle does not go where

the waves cancel out, but is attracted to where they cooperate.

This idea seems to me so natural and simple, to resolve the

wave-particle dilemma in such a clear and ordinary way, that it

is a great mystery to me that it was so generally ignored. (John

Stewart Bell, 1986)
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Implications of Bohmian mechanics:

• familiar (macroscopic) reality

• quantum randomness

• absolute uncertainty

• operators as observables

• the wave function of a (sub)system

• collapse of the wave packet

• quantum nonlocality
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BM ↔ 2–4; QP, MP, QTWO
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Bohmian Mechanics versus Bohmian Approach

• There is a clear primitive ontology (PO), and it describes matter in space
and time.

• There is a state vector ψ in Hilbert space that evolves according to Schrödinger’s
equation.

• The state vector ψ governs the behavior of the PO by means of (possibly
stochastic) laws.

• The theory provides a notion of a typical history of the PO (of the universe),
for example by a probability distribution on the space of all possible histories;
from this notion of typicality the probabilistic predictions emerge.

• The predicted probability distribution of the macroscopic configuration at
time t determined by the PO agrees with that of the quantum formalism.
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The Architecture of

Fundamental Physical

Theories

26



Ontology

Law
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Adequate ontology?
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For example:

29-1



a “decoration” of space-time



Can the ontology be too abstract: not in-

volving something like local beables in more

or less familiar space-time?
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Note: The issue is not whether objects of very high

abstraction can be a part of the ontology of a physical

theory, but whether such objects can constitute the

entire ontology.

Example: pure wave function ontology versus wave

function and particles [Bohmian mechanics]
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Levels of abstraction

• decoration of [quasi-familiar] space-time (particles, fields, etc.)

• decoration of very high dimensional space-time [regarded as
the fundamental space] (David Albert)

• decoration of a completely abstract space

• no decoration but on space-time (operators on a Hilbert space of

wave functions on configuration space)

• no decoration, no space-time (abstract operators or more general

noncommutative objects)
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classical ontology (BM, GRW, SL)

quantum ontology (CH?)

macroscopic ontology (?QTWO?)
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Hilbert space ontology

Properties are associated with sub-

spaces of Hilbert space, or with pro-

jection operators. (NRAO?)
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Law

• differential equations (ordinary or partial)

• stochastic process / SDEs

• variational principle

• something else?
35



1. PO: Primitive ontology / local beables [ Q ]

2. X : set of (kinematically possible) space-time histories of PO

/ decorations of space-time [ Q(t) ]

3. L ⊂X : Law for space-time history / (additional) theoretical

entities [ Q(t) / Ψ ]

4. Typical space-time history (∈ L ) / P on L [ |Ψ0|2 ]
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For a stochastic law there may be no separate L .

Rather

P on L

would be replaced by

P on X
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Typicality
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• History

• Statistical mechanics

• Roles of probability

• Typicality beyond probability

• The method of appeal to typicality
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probability

chance

likelihood

distribution

measure
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Notions of probability

Subjective chance (Bayesian?)

Objective chance (propensity?)

Relative frequency, empirical (pattern)

A mathematical structure providing a mea-

sure of the size of sets (Kolmogorov)
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Typicality
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One should not forget that the Maxwell distribution is not a state
in which each molecule has a definite position and velocity, and
which is thereby attained when the position and velocity of each
molecule approach these definite values asymptotically. . . . It is
in no way a special singular distribution which is to be contrasted
to infinitely many more non-Maxwellian distributions; rather it
is characterized by the fact that by far the largest number of
possible velocity distributions have the characteristic properties
of the Maxwell distribution, and compared to these there are only
a relatively small number of possible distributions that deviate
significantly from Maxwell’s. Whereas Zermelo says that the
number of states that finally lead to the Maxwellian state is
small compared to all possible states, I assert on the contrary
that by far the largest number of possible states are “Maxwellian”
and that the number that deviate from the Maxwellian state is
vanishingly small. (Boltzmann)
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Ancient History (< 1950)
Glen Shafer, “Why did Cournot’s principle disappear?” and “The Sources of
Kolmogorov’s Grundbegriffe”

Jakob Bernoulli, Ars Conjectandi (1713): “Be-

cause it is only rarely possible to obtain full

certainty, necessity and custom demand that

what is merely morally certain be taken as

certain.”
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Antoine Cournot (1843): “A physi-

cally impossible event is one whose

probability is infinitely small. This re-

mark alone gives substance—an ob-

jective and phenomenological value—

to the mathematical theory of prob-

ability.” (Cournot’s principle)
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Paul Levy (≈1919), Cournot’s principle is the only connection

between probability and the empirical world

The principle of the very unlikely event (Levy); The principle of

the negligible event (Hadamard)

Kolmogorov, Foundations (1933), Chapter 1, §2, The Relation

to Experimental Data: Only Cournot’s principle connects the

mathematical formalism with the real world.

Borel (≈1948): The principle that an event with very small prob-

ability will not happen is the only law of chance.

46



Modern History (> 1950)
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In order to establish quantitative results, we must put some sort

of measure (weighting) on the elements of a final superposi-

tion. This is necessary to be able to make assertions which hold

for almost all of the observer states described by elements of

the superposition. We wish to make quantitative statements

about the relative frequencies of the different possible results of

observation—which are recorded in the memory—for a typical

observer state; but to accomplish this we must have a method

for selecting a typical element from a superposition of orthogonal

states. (Everett 1957)
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The situation here is fully analogous to that of classical statistical

mechanics, where one puts a measure on trajectories of systems

in the phase space by placing a measure on the phase space

itself, and then making assertions . . . which hold for “almost

all” trajectories. This notion of “almost all” depends here also

upon the choice of measure, which is in this case taken to be

the Lebesgue measure on the phase space. . . . Nevertheless the

choice of Lebesgue measure on the phase space can be justified

by the fact that it is the only choice for which the “conservation

of probability” holds, (Liouville’s theorem) and hence the only

choice which makes possible any reasonable statistical deductions

at all. (Everett 1957)
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Then for instantaneous macroscopic configu-

rations the pilot-wave theory gives the same

distribution as the orthodox theory, insofar

as the latter is unambiguous. However, this

question arises: what is the good of either

theory, giving distributions over a hypotheti-

cal ensemble (of worlds!) when we have only

one world. (Bell 1981)
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. . . a single configuration of the world will show sta-

tistical distributions over its different parts. Suppose,

for example, this world contains an actual ensemble of

similar experimental set-ups. . . . it follows from the

theory that the ‘typical’ world will approximately re-

alize quantum mechanical distributions over such ap-

proximately independent components. The role of the

hypothetical ensemble is precisely to permit definition

of the word ‘typical.’ (Bell 1981)
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Then there is the surprising contention of Everett and De Witt that the
theory ‘yields its own interpretation’. The hard core of this seems to be the
assertion that the probability interpretation emerges without being assumed.
In so far as this is true it is true also in the pilot-wave theory. In that theory
our unique world is supposed to evolve in deterministic fashion from some
definite initial state. However, to identify which features are details crucially
dependent on the initial conditions (like whether the first scattering is up or
down in an α track) and which features are more general (like the distribution
of scattering angles over the track as a whole) it seems necessary to envisage
a comparison class. This class we took to be a hypothetical ensemble of
initial configurations with distribution |ψ|2. In the same way Everett has to
attach weights to the different branches of his multiple universe, and in the
same way does so in proportion to the norms of the relevant parts of the
wave function. Everett and De Witt seem to regard this choice as inevitable.
I am unable to see why, although of course it is a perfectly reasonable choice
with several nice properties. (Bell 1981)
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1872: X = (q1, v1, . . . , qN , vN)

femp(q, v) ≡ fX(q, v)
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fX(q, v) =
|X ∩∆(q, v)|
|∆(q, v)|N

=
nX(∆(q, v))/N

|∆(q, v)|

femp(q, v, t) ≡ fX(t)(q, v)
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At low density

fX(t)(q, v) ≈ ft(q, v)

where ft obeys Boltzmann’s equation

∂ft

∂t
+ v · ∇qft = Q(ft)

ft(q,v)→ feq(q,v) ∼ e−
1
2mv2/kT
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H(ft) =
∫
ft(q,v) log ft(q,v)dqdv

S(X) = −NH(fX)



1877: Macrostates

Γf = {X ∈ ΓE | fX(q,v) ≈ f(q,v)}

1877↔1872: At low density

|Γf | ∼ e−NH(f)

N ∼ 1020: most of ΓE is Γfeq

ΓE ΓE
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log |Γf | = −NH(f)

S(X) = log |ΓfX |

(S(X) = SG(%) when % is uniform on ΓfX.)
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Smallness of Atypical Events

10−1020
(for N = 1020)
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Γfeq feq

→

X ∈ ΓE fX f − space

microscopic picture macroscopic picture
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Some Consequences of Typicality

Maxwellian velocities

Boltzmann’s equation (Lanford)

Second law of thermodynamics

Hydrodynamic equations

Canonical ensemble for quantum mechanics (Canonical typical-
ity)

Quantum randomness (in Bohmian mechanics)

Approach to equilibrium in quantum mechanics
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Relevant Roles of Probability

• ρemp: Empirical distribution (relative frequency)

• ρth: Theoretical distribution (idealization, N →∞)

• P : Measure for typicality

ρemp(x) ≈ ρth(x)
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Common situation:

ρth(x)dx = ρP(x)dx = “P (X ∈ dx)”
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ρemp↔ ρP ↔ P

ρemp↔ ρ
ψ
th↔ PΨ

Good (simplicity)

Bad (misleading simplicity)
64



ψ versus Ψ
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Struyve and G (2007):

Quantum equilibrium is “unique.”
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Typicality not given by probability:

Murray Gell-Mann and James Hartle, decoherent his-

tories

Bruno Galvan, “trajectory-based formulation of quan-

tum mechanics only based on the standard formalism

of quantum mechanics”

Rafael Sorkin and Fay Dowker, co-event formulation

of quantum mechanics
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Remark on typicality (with J. L. Lebowitz, R. Tumulka, and

N. Zangh̀ı, The European Physical Journal H: Historical Perspectives on Con-

temporary Physics 35, 173-200 (2010), arXiv:1003.2129v1)

When employing the method of appeal to typicality, one usually

uses the language of probability theory. But that does not imply

that any of the objects considered is random in reality. Rather, it

means that certain sets (of wave functions, of orthonormal bases,

etc.) have certain sizes (e.g., close to 1) in terms of certain

natural (normalized) measures of size. That is, one describes

the behavior that is typical of wave functions, orthonormal bases,

etc.. However, since the mathematics is equivalent to that of

probability theory, it is convenient to adopt that language. For

this reason, using a normalized measure µ does not mean making

an “assumption of equal probability,” even if one uses the word
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“probability.” Rather, it means that, if a condition is true of
most . . . , or most H, this fact may suggest that the condition
is also true of a concrete given system, unless we have reasons
to expect otherwise.

Of course, a theorem saying that a condition is true of the vast
majority of systems does not prove anything about a concrete
given system; if we want to know for sure whether a given sys-
tem is normal for every initial wave function, we need to check
the relevant condition . . . . Nevertheless, a typicality theorem
is, as we have suggested, illuminating; at the very least, it is
certainly useful to know which behaviour is typical and which is
exceptional. . . .

The method of appeal to typicality belongs to a long tradition in
physics, which includes also Wigner’s work on random matrices
of the 1950s. In the words of Wigner . . . :



One [. . . ] deals with a specific system, with its proper
(though in many cases unknown) Hamiltonian, yet pre-
tends that one deals with a multitude of systems, all with
their own Hamiltonians, and averages over the proper-
ties of these systems. Evidently, such a procedure can
be meaningful only if it turns out that the properties in
which one is interested are the same for the vast majority
of the admissible Hamiltonians.

This method was used by Wigner to obtain specific new and sur-
prising predictions about detailed properties of complex quantum
systems in nuclear physics.

If we know of a given system that its Hamiltonian H belongs
to a particular small subset S0 of the set S of all self-adjoint



operators on the appropriate Hilbert space, then two kinds of
typicality theorems are of interest: one saying that the relevant
behavior occurs for most H in S0, the other saying that it occurs
for most H in S. Note that the former does not follow from the
latter when S0 is very small compared to S, as it would then be
consistent with the latter for S0 to consist exclusively of excep-
tional Hs. Nor does the latter follow from the former, so the
two statements are logically independent. In fact, both are of
interest because each statement has its merits: The typicality
theorem about S0 gives us more certainty that the given system,
whose Hamiltonian belongs to S0, will behave in the relevant
way. The typicality theorem about S gives us a deeper under-
standing of why the relevant behavior occurs, as it indicates that
the behavior has not much to do with S0 but is widespread all
over S. That is, there is a reciprocal relation: The greater the
degree of certainty that a typicality theorem confers, the less its
explanatory power.


