
How to Derive the 
Equilibrium Velocity 
Distribution Two Ways 
(Neither of Which is What 
You are Expecting) 
Cosmology Summer School 
Santa Cruz, July 26, 2013 
Tim Maudlin, NYU 



The Target 

!   Statistical Mechanics uses certain statistical techniques to 
derive “laws” for the behavior of systems with many degrees 
of freedom. The prototype such system is a box of 
monatomic gas with something like a mole of atoms. Of 
particular interest are the “equilibrium” states of such a 
system. Many “laws”, e.g. the “ideal gas law” PV=nRT, 
describe relations between various (macroscopic) parameters 
of systems at equilibrium. What we are interested in here is a 
derivation of the velocity distribution of the atoms in our 
gas at a given temperature T at equilibrium. 

!   But what does “at equilibrium” mean? 



Equilibrium 

!   Some macrostates (e.g. the state of a gas that had been 
confined to half of a box and then had the partition 
removed, or of two boxes at different temperatures put in 
thermal contact) spontaneously change with respect to their 
macroscopic parameters. And in an isolated system, those 
parameters often settle, after a little time, into a static state 
in which they persist for very long times. If there is a state 
into which the system so settles, it is called “equilibrium”. 

!   Note that what counts as “equilibrium” may be sensitive to 
the definition of “a little time” and “very long times”. 



Note 

!   The very definition just given of an “equilibrium” state 
already has a time asymmetry built into it: “settling 
into” and “remaining in” denote a temporal progress 
from past to future. So a certain time-directedness is 
already built into the very description of the 
phenomenon we are trying to explain. 



The Velocity Distribution 

!   Isolated  boxes of gas tend to have equilibrium states 
into which they settle. In these states, the temperatures 
at different locations are uniform, pressures are 
uniform, densities are uniform (ignoring gravitational 
effects), the ideal gas law relates these, etc. 

!   “Tend to” here means: every known isolated box of gas 
through all history has behaved this way. 

!   At equilibrium, we expect the pressure, temperature 
and density to be uniform. But what about the 
distribution of velocities of the atoms? 



A Note About “Uniform” 

!   The sense in which the density of the gas is “uniform” 
is this: subdivide the volume V of the box into many, 
many parts with volume Pi, but each part large enough 
to contain many, many atoms. At any moment, each 
such part has a well-defined density: Ni/Pi. The density 
if “uniform” if these densities are all equal to within 
some small epsilon. Similarly for temperature, pressure, 
etc.  

!   Note that this requires there to be many, many atoms. A 
“single particle gas” makes no sense at all in this 
context. 



Boltzmann 1872 

   



Boltzmann con’t 

  



The Velocity Distribution 

!   Our target, then, is in this sense the empirical velocity 
distribution of a gas at temperature T at equilibrium. 
Take the set of all of velocities (or speeds) and divide it 
into ranges such that every range will have many, many 
atoms. We want to derive the (stable to within epsilon) 
distribution of velocities in the gas in these ranges at 
equilibrium. 

!   That is, we want the distribution that any initial state 
will tend to go to and remain in. 



Note on Terminology 

!   The velocity distribution is, in the technical 
mathematical sense, a “probability distribution” or a 
“probability measure”. That is, the proportion of atoms 
in the union of two disjoint velocity ranges is the sum 
of the proportions in each range, and the sum of all the 
proportions over all ranges is unity. But the meaning of 
the distribution has nothing at all to do with 
“probability”. There is a definite, exact, empirical fact 
about what the distribution is at all times, and we want 
to derive the distribution that the system settles down 
to. 



Temperature 

!   One might take the given temperature of the system as 
a clue to the velocity distribution. Since temperature is 
a measure of mean kinetic energy, T = <1/2mv2>, one 
might guess that most of the atoms should have a speed 
near √(2T/m). But how near, and with what sort of 
spread? 



Simplifying Assumptions 

!   To make our problem easier (using assumptions we can 
ultimately go back and derive), we will assume that at 
equilibrium the velocity distribution is isotropic (in physical 
space) and the spatial distribution of atoms is uniform (in 
physical space). 

!   This means that all we need is a speed distribution: the 
velocity distribution follows from the speed distribution and 
the isotropy. 

!   Note: the notions of isotropy and uniformity here require a 
measure to be defined, but the relevant measure is just given by 
the metric of space itself. 



Any Guesses? 

  



Three Derivations 

!   We are going to look at three derivations of the 
equilibrium velocity distribution: 

!   Maxwell 1860: “Illustrations of the dynamical theory of 
gases” 

!   Maxwell 1867:  “On the dynamical theory of gases” 

!   Boltzmann 1872: “Further studies on the thermal 
equilibrium of gas molecules” 



What These Derivations Are Not 

!   David has outlined or mentioned two possible 
approaches to a question like this. Let’s recall them. 

!   Approach 1) choose (how?) some measure over the 
phase space of the system. For each possible velocity 
distribution, calculate the measure of the volume of 
phase space that has that distribution. If one such 
distribution absolutely dominates in terms of the 
measure, say that if the dynamics is “random” (ergodic? 
something else?), then no matter where the system 
begins, it will “probably” “soon” wander into that 
distribution and stay there “for a long time”. 



What They Are Not (Con’t) 

!   Approach 2) Choose a measure over phase space 
(somehow). Choose a macrostate that specifies a 
velocity distribution. Use the exact microdynamics to 
time-evolve the measure restricted to the macrostate in 
time. If after some period of time, almost all of the 
time-evolved measure now occupies a macrostate 
characteristic of a certain velocity distribution, and 
then stays there for a long time, declare that the 
equilibrium state for the initial macrostate. Repeat for 
all possible initial macrostates. 



Problems 

!   For Approach 1, we must somehow justify the use of the 
measure on phase space and explain what we mean by a 
“random” dynamics. It is not clear that one could derive 
anything like relaxation times from this approach. Note that 
the exact microdynamics plays no role. Given a tractable 
definition of “random dynamics”, perhaps this can be done. 

!   For Approach 2, we must justify the choice of measure on 
phase space. The calculation would give relaxation times, 
based in the microdynamics, which have to be recalculated 
for each initial state. The relevant calculations are practically 
impossible. 



In Any Case 

!   None of the three papers we are going to look at 
proceeds in anything like either of these fashions. 
Nonetheless, they both derive an equilibrium velocity 
distribution, and indeed the same equilibrium velocity 
distribution. Presumably, it is the same one that would 
be derived using Approach 2, but we can’t directly 
verify this because we can’t actually calculate using 
Approach 2.  

!   So how do they work? 



What to Watch For 

!   In his 1872 paper, Boltzmann makes an incredibly 
strong claim about what he has achieved. So strong, in 
fact, that it is provably false. Both the reversibility and 
recurrence objections demonstrate it is false. When this 
was pointed out, Boltzmann quickly saw how to explain 
what he had done and add the appropriate caveats. But 
the fact that he made the claim shows that it was not 
entirely clear even to him what he was doing. 



The Quote 

  



Keep Your Eyes Peeled! 

!   So here are some questions: 

!   At what point, and in what way, does some time-
asymmetric assumption appear in the reasoning? 

!   At what point, and in what way, does any 
“probabilistic” or “randomness” assumption appear in 
the reasoning? How is it justified? 



Maxwell 1860 

!   Maxwell’s 1860 derivation of the equilibrium velocity 
distribution is amazingly short, and amazingly puzzling. 

!   All that Maxwell assumes is that the equilibrium 
velocity distribution has two formal properties: 

!   1) It is isotropic. 

!   2) The velocities of a particle in orthogonal directions 
are uncorrelated. 



Clarification of Terms 

!   It is clear what “isotropic” means here: for any given speed, 
the number of particles moving in any particular (coarse-
grained) direction is the same, within epsilon. (In a one-
particle gas, this cannot possibly obtain!) 

!   The condition of the velocities in orthogonal directions 
being uncorrelated also has an exact meaning. Take, for 
example, the overall distribution of X-velocities. Now restrict 
attention to all the particles with any given Y-velocity, and 
look a the distribution of X-velocities in that subgroup. It 
should be the same (within epsilon) for all Y-velocities. So 
knowing the Y-velocity of a particle gives no information 
about its X-velocity (or Z-velocity), for any orthogonal 
directions. 



The Theorem 

!   Now given these two assumptions, there is a rather 
amazing mathematical fact: 

!   There is only one form of velocity distribution that has both 
of these formal features! 

!   The velocity distribution in every direction (hence X-
velocity, Y-velocity, and Z-velocity for any choice of X-, 
Y-, and Z-axes) must be Gaussian: f(v) = Ae –Bv2. 

!   The speed distribution is therefore g(s) = A’s2e –B’s2. 

!   The temperature fixes the B, normalization the A. 
Done. 

 



WTF? 

!   On the one hand, the status of Maxwell’s 1860 
theorem as a theorem is clear: it is, indeed, a purely 
mathematical result, proven with certainty. Any velocity 
distribution that satisfies Maxwell’s two formal criteria 
must be of this form. 

!   But that just makes more urgent the completely 
unaddressed question: Why assume that the equilibrium 
distribution, defined as the distribution systems tend to, 
satisfies these formal criteria? So far, we have been given 
no reason at all to expect this! 



What Maxwell Said (per Strevens) 

!   Why isotropic? 

!   “the directions of the coordinates are perfectly 
arbitrary” (Maxwell 1860, p. 381). 

!   Why uncorrelated? 

!   “the existence of the velocity x does not in any way 
affect that of the velocities y or z, since these are all at 
right angles to each other and independent” (p. 380) 



Dialogue on Humeanism, Laws, and 
Mechanical Explanations 

!   Hypothetical Mad-Dog Humean: WFT do you mean 
“WTF?”? Maxwell has provided us something short and 
pithy that you can write on a T-shirt, that is also very 
informative! Who cares how, or whether, he “justifies” 
the principles of the derivation? The only justification 
for such a claim, the only justification there could 
possibly be, is empirical justification! The question is: is 
Maxwell’s claim true or not. If it is true, and pithy, and 
informative enough, then ipso facto it is a law of nature, 
and has all the explanatory power that any law of 
nature has. Period. End of Story. 



Dialogue Con’t 

!   Worried More Moderate (or Sane) Humean: Somehow 
that just seems wrong to me. The claim that all boxes of 
gas at equilibrium just have this velocity distribution 
doesn’t somehow have the right form to be a law of 
nature: it may be a true generalization, but if so it itself 
stands in need of explanation. Let’s see if I can justify, 
from Humean principles, my squeamishness. Maybe 
Maxwell’s claim is pithy, and true, but not informative 
enough. After all, not that many things in the world are 
boxes of gas, and further not all boxes of gas are even at 
equilibrium. 



Dialogue Con’t 

!   HMD Humean: Let’s take these in turn. It’s true that 
not that many things in the world are boxes of gas, but 
many are and, in principle many more could be. If 
there happened to be more, is there some tipping point 
at which it becomes a law? If so, how do you know we 
not at that point? Or even better, maybe we can expand 
Maxwell’s distribution to cover stars, which are sort of 
confined boxes of gas! There are lots and lots stars! 
Maybe a simple extension covers most of what there is! 



Dialogue Con’t 

!   WMM Humean: Look, even if we can somehow properly 
regard many more things as effectively boxes of gas, there is 
another problem: not that many are at equilibrium. So the 
covered class is small in that respect too. 

!   HMD Humean: You are overlooking the meaning of 
equilibrium. Equilibrium, as we said, is the state that all 
(quasi-isolated) systems aim at and tend to. Given that 
meaning, Maxwell’s claim has empirical consequences not 
just for systems at equilibrium, but also for systems out of 
equilibrium, and hence for all (quasi-isolated) systems. And 
at least the whole universe is a perfectly isolated system! So 
the scope is very large. 



Dialogue Con’t 

!   WMM Humean: Wait a minute: this is getting worse 
and worse! Pointing out the meaning of “equilibrium” 
in this way makes the content of Maxwell’s claim wider 
but also teleological. No proper law of nature should 
have the form of saying what a system aims at to tends 
to! We want mechanical explanations, not teleological 
explanations, and in any mechanical explanation the 
later states of the system are accounted for in terms of 
the earlier states, not vice-versa! It may be a consequence 
of the laws of nature that gases tend to a certain end 
state, but to accept that itself as a law would be to reject 
much of the Age of Reason! 



Dialogue Con’t 

!   HMD Humean: Where the hell does such a constraint 
on the nature of a proper explanation and hence a 
proper law come from! We want pithy and we want 
informative! You are in the grip of some old-fashioned, 
long refuted idea that there is some fundamental 
direction of time (from past to future) which induces a 
relation of cause  and effect in which causes precede 
their effects, and proper, mechanical explanations are 
causal! Away with all that rubbish! It would, obviously, 
rule out teleological explanations, but since there is no 
direction of time the very definition of “teleological” 
makes no sense. 



Dialogue End 

!   Sane Non-Humean: Hey, guys, I think there is a 
fundamental direction of time, and that causes always 
precede their effects, and that when we look for 
“mechanical” explanations we are asking for accounts in 
terms of how the microscopic constituents of things interact 
as time goes forward to produce certain sorts of outcomes, 
where the future states are all derived and cannot play the 
role of targets. So if you have any sort of intuition that we are 
looking for “mechanical” explanations, you are tacitly 
presupposing my view. 

!   HMD Humean and WMM Humean (in unison): You 
maniac! 



Maxwell 1867 

!   “The only case in which I have determined the form of this 
function is that of one or more kinds of molecules which 
have by their continual encounters brought about a 
distribution of velocity such that the number of molecules 
whose velocity lies within given limits remains constant. In 
the Philosophical Magazine for January 1860, I have given 
an investigation of this case, founded on the assumption 
that the probability of a molecule having a velocity resolved 
parallel to x lying between given limits is not in any way 
affected by the knowledge that the molecule has a given 
velocity resolved parallel to y. As this assumption may appear 
precarious, I shall now determine the form of the function 
in a different manner.” 



Maxwell 1867: Strategy 

!   Maxwell’s 1867 derivation of the velocity distribution 
formula proceeds along entirely different lines. It 
begins with the microdynamics, or rather with an 
assumption about the result of the microdynamics in a 
suitably dilute (and in another way suitably non-dilute) 
gas: most of the time, any given atom will travel at 
constant speed in a straight line, so its velocity is 
constant. The velocity only changes if there is a collision 
between two atoms. A collision occurs when they get 
sufficiently close. 



Strategy 

!   In order to determine how the velocity distribution of 
the gas changes over a period of time, then, all one 
needs to know is 

!   1) How the velocities of two colliding particles change 
when they undergo a certain sort of collision and 

!   2) How many collisions of the various possible sorts 
take place over that period of time. 

!   The first is rigorously derived from the microdynamics. 



 
Collision Dynamics 

 
!   The first step is to figure out what happens in a certain kind 

of collision. What do we mean by “a certain kind of 
collision”? That depends on the dynamics: we have to 
specify enough information about the collision situation to 
use the dynamics to determine the outcome. Since we are 
assuming a regime in which most of the time the particles 
are on inertial trajectories, the “incoming” state is given by 
specifying the initial velocities of the two particles before the 
collision starts, plus whatever more information is needed to 
determine the outgoing velocities.  

!   What is this extra information for Newtonian dynamics? 



Masses and Impact Parameter 

!   To solve the problem in Newtonian mechanics, we 
need to know the masses of the two particles and the 
relative orientation in space of their initial positions 
(and the force law, including charges needed to 
determine the forces, of course). 

!   The relative orientation, in turn, can be specified by 
one: the impact parameter, which is the spatial vector 
from M1 to M2 at their instant of closest approach 
assuming no collision (i.e. assuming inertial motion).  



Two Views 

!   There are two convenient ways to picture the collision: 
in the frame in which the total momentum of the pair 
of particles is zero, and in the frame in which M1 is at 
rest. These are obviously intertranslatable. What does 
the collision look like in each frame? 



In the Center of Mass Frame 

  



In the frame in which M1 is initially at rest 

  



Epsilonics 

!   We want to calculate how many collisions of a certain 
kind happen in a given period of time dT. “Of a 
certain kind” means: a particle with mass M1 in the 
small range of velocities from V1

in to V1
in + dV collides 

with a particle of M2 in the range of velocities from 
V2

in to V2
in + dV with an impact parameter between B 

and B + dB, in a time between T and T + dT. All of the 
d’s are finite and chosen large enough so there will be 
many such collisions in the given time, and small 
enough that the range of outgoing velocities is small. 
This requires that there be many particles of each type, 
not too dilute. 



Input from Step I 

!   The dynamics tells us what the outgoing velocities of the two 
particles in such a collision will be (within epsilon). So if we 
knew how many such collisions took place between T and T 
+ dT, we would know how many M1 particle that originally 
had velocity V1

in
 no longer have V1

in on account of such a 
collision (so how the total number of M1 particles with V1

in 
has been reduced in that time due to these sorts of 
collisions) and how many M2 particles that originally had 
V2

in no longer have V2
in due to such collisions. And since 

we know what the outgoing velocities are, we would know 
how many more M1 particles have V1

out at the end of the 
time due to such collisions, and how many more M2 
particles have V2

out due to such collisions. 



Integrate Over All Possibilities 

!   Now if we have these transition numbers, we just 
integrate over all possible collisions to get the total 
change in the velocity distribution for each type of 
particle. We would therefore have derived an equation 
for how the velocity distribution changes with time. 
That equation happens to be time asymmetric, and to 
have the feature that no matter what the initial velocity 
distribution happens to be, it will relentlessly approach, 
and eventually get arbitrarily near to a particular 
velocity distribution: the one that Maxwell derived in 
1860! We have proven that the Maxwell distribution is 
the equilibrium distribution in our sense! 



The Passage in Maxwell 1867 

  



Continued 

  



Continued 

  



End 

  



The Key Move 

!   The fundamental principle used in the derivation is an 
Assumption about the Number of Collisions or, in German 
a Stosszahlansatz. The assumption is just this: If the target 
regions occupy a proportion P of the total volume, then 
(about) the same proportion P of “attacking” particles will, 
at that time, happen to find themselves in the target region, 
and hence will undergo that type of collision in the stated 
period of time. 

!   That is, the Stosszahlansatz is just the claim that the location 
of the target areas is uncorrelated to the location of the 
attacking particles. The sense of being uncorrelated is 
perfectly clear. 



A Theorem 

!   Given the Stosszahlansatz, Maxwell’s result is (almost) a 
proper theorem (issues about the epsilonics). So the 
relentless, time-asymmetric march toward the Maxwell 
distribution will in fact occur as long as the 
Stosszahlansatz holds. What the reversibility objection 
shows, then, is that in the time-reversed scenario the 
Stosszahlansatz does not, in fact hold. What the 
recurrence objection shows is that eventually, if we wait 
long enough, the Stosszahlansatz will not hold. 



Boltzmann 1872 

  



Boltzmann 1872 

  



The Explanatory Status of 
Lack of Correlation 

!   If we think that Maxwell and Boltzmann have actually 
managed to explain both what the equilibrium 
distribution is and why it is the equilibrium distribution 
(i.e. the distribution towards which all actual isolated 
boxes of gas in the history of the universe approaches), 
then the Stosszahlansatz must have a particular sort of 
explanatory force, so that deriving a phenomenon from 
it counts as explaining the phenomenon. What could 
such a status be? 



A Priorism 

!   One might argue that a priori, before “opening our 
eyes”, we should expect positions not to be correlated. And 
one might then ask by what right we could form such an 
expectation? (Cue David.) 



Pure Empiricism 

!   We could say that the only rational expectations we can 
have must come from experience. If in our experience, 
such particles often are uncorrelated then that can 
become a Humean law, and hence we can appeal to it 
to explain. Or in any case, if what counts as 
“explaining” a phenomenon is nothing more than 
noticing that “it usually happens”, and that can only be 
determined empirically. 



Default Explanatory Status 

!   There is another possible position, somewhat a priori 
but distinct from the a priori view. It says: you should 
have no expectations at all about what you will see 
when you open your eyes. But if you happen to find 
positions like this uncorrelated, then, absent other 
considerations, that requires no further explanation, and if 
you happen to find correlations, that does require 
further explanation. 



Example 

!   Suppose you are flipping a coin in Santa Cruz and the 
Pope is flipping a coin at the Vatican. You both flip 
many times. Maybe both coins are fair, and the flips are 
about half heads half tails, maybe one or both are 
biased, etc. But suppose we ask: are the outcomes of 
these different flips correlated or uncorrelated. That is a 
perfectly well-defined question, which amounts to: 
would conditionalizing on the results of the Pope’s flip 
change the frequency of results of my flips at all? If not, 
they are uncorrelated, is so they are correlated. 



 
 

Claim 
 
 

!   I claim that our attitudes in the two cases are quite 
different. If the outcomes are uncorrelated then absent 
further considerations (e.g. an attempt to rig things so 
they were correlated) that requires no further explanation. 
Once we explain the frequency of each coin 
individually, the lack of correlation between them 
requires no further explanation. But if the flips were 
correlated, then that would demand a further 
explanation. (See Bell’s theorem).  

!   This is a true psychological fact. I claim it is also proper 
methodology. 


