The Formation of Population III Binaries from Cosmological Initial Conditions.
Simulation by Matthew Turk, Tom Abel, and Brian O'Shea. Image by Ralf Kaehler.
Still from a simulation depicting an early stage of a gamma-ray burst. Collaborators: Stan Woosley (UCSC) and Weiqun Zhang (Stanford University).
"Simulated Observations" generated using the Sunrise code.
Image credit: Chris Moody
BigBolshoi Cosmological Simulation. Image Credit: Stefan Gottloeber (AIP)
Simulated Observations generated using the Sunrise code. Image Credit: Patrik Jonsson (Harvard/CfA)
The purpose of the University of California High-Performance AstroComputing Center (UC-HiPACC) is to realize the full potential of the University of California world class resources in computational astronomy. Read the letter from the Director
May 2014 AstroShort: Drying Out the Moon?


Moon rocks brought back by the Apollo astronauts revealed that the lunar mineral apatite is everywhere, from the ancient lunar highlands to the young lunar maria (lava seas). Much of it is rich in hydrogen. Taking hydrogen as a proxy for water, the evidence suggested that the material from which the Moon formed might have been as wet as that which formed Earth. Apatite became widely adopted as a yardstick for measuring hydrogen—and thus water—in the Moon. But a new computational model of how apatite crystalized from lunar magmas, devised by Jeremy W. Boyce at UC Los Angeles and four coauthors, now reveals that apatite, the mineral on which scientists have long relied, “cannot be trusted.” See the AstroShort “Drying Out the Moon?”

Photomicrograph of Apollo 11 lunar sample 10044,644 maps density of its polished surface: denser materials reflect more electrons and look lighter gray. Pinkscale version of image highlights density variations for a crystal of apatite. Credit: Jeremy Boyce, UCLA


posted: 2014-05-22 10:34:25
April 2014 AstroShort: Not-So-Rare Earths


If the stars observed by NASA’s Kepler spacecraft are statistically representative of those in our own solar neighborhood of the Milky Way galaxy, then “Earth-size planets are common around nearby Sun-like stars,” conclude Erik A. Petigura and Geoffrey W. Marcy from the University of California, Berkeley and Andrew W. Howard from the University of Hawaii. They were led to that conclusion by a monumental statistical analysis of Kepler data completed with the help of the Carver supercomputer at the Department of Energy’s (DOE’s) National Energy Research Scientific Computing Center (NERSC). Read AstroShort

Field of view of the Kepler space telescope, located in the constellation Cygnus, just above the plane of the Milky Way Galaxy. Credit: NASA

posted: 2014-04-16 17:35:45
March 2014 AstroShort: Discovered: Stellar Dinosaurs!


Arrow points to supernova SNLS 06D4eu and its host galaxy, both about 10 billion light-years away. Big objects with spikes are stars in our own Milky Way; every other bright dot is a distant galaxy. Credit: University of California, Santa Barbara

“We had no idea what these things were,” recounted D. Andrew Howell, staff scientist at Las Cumbres Observatory Global Telescope Network and adjunct assistant professor at UC Santa Barbara. Two objects caught by the detectors of the Supernova Legacy Survey looked like supernovae—stars exploding in cataclysmic stellar suicide—but did not act like familiar supernovae. The finding launched Howell along with Daniel Kasen, computational astrophysicist at UC Berkeley, and 16 colleagues into detective sleuthing that led to the discovery of … Read AstroShort


posted: 2014-03-05 11:14:05
January 2014 AstroShort: A Black Hole is Born


Astrophysicists had unusual ringside seats to the birth of a black hole in an inconspicuous galaxy relatively nearby, watching across all wavelengths from initial gamma ray burst and optical flash through fading afterglow. Read AstroShort

Los Alamos National Laboratory astrophysicist Tom Vestrand poses with the fast-slew array of telescopes for RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent visual system that scans the skies for optical anomalies and zeroes in on them when it detects them. This unique capability allowed astronomers to witness the birth of a black hole in the constellation Leo.

posted: 2014-02-01 00:32:36
December 2013 AstroShort: AGORA — Seeing the Invisible Elephant


Why should astrophysicists believe computational simulations about the origins of the universe and evolution of galaxies? After all, results from different codes differ. Now, a major international effort Project AGORA is systematically comparing major computational codes to tease out the real astrophysics…. Read AstroShort

Differences in supercomputer simulations to be compared in the AGORA project are clearly evident in this test galaxy produced by each of nine different versions of participating codes using the same astrophysics and starting with the same initial conditions.


posted: 2014-01-22 13:29:17
Search only UC-HiPACC
Stay Connected

Subscribe to Newsfeeds
In the News
  • In the June, 2014, Sky & Telescope, Sandra M. Faber, Henry C. Ferguson, David C. Koo, Joel R. Primack, and Trudy E. Bell explain how Hubble’s single largest observing program is detecting the earliest galaxies, finding the most distant supernovae, and revealing the fireworks-like peak of star formation at cosmic high noon.

    ...view article

  • A Spanish-language article "The Universe as a 3D Movie" profiles the work of HiPACC director Joel Primack and his philosopher wife Nancy Ellen Abrams, who has co-authored two books with him. It was published in the May 2013 issue of Muy Interesant (Madrid), the largest-circulation Spanish-language magazine.

    ...view article